
NASA-CR-194589

3rd NASA Symposium

on VLSI Design

University of Idaho

Moscow, Idaho

October 30-31, 1991

(NASA-CR-194589) THE 1991 3RD NASA

SYMPOSIUM ON VLSI DESIGN (Idaho

Univ.) 492 p

N94-18337

--THRU--

N94-18381

unclas

G3/33 0191397



_= _

L

................. : _: _£: _ 77 _ : _::_ _:_ .....

Cover design by Peter Vincent
__ 2



3rd NASA Symposium on VLSI Design ..i

Welcome to the third annual NASA Symposium on VLSI Design, co-sponsored by the

IEEE. Each year this symposium is organized by the NASA Space Engineering Research

Center (SERC) at the University of Idaho and is held in conjunction with a quarterly

meeting of the NASA Data System Technology Working Group (DSTWG). One task of

the DSTWG is to develop new electronic technologies that will meet next generation

electronic data system needs. The symposium provides insights into developments in VLSI

and digital systems which can be used to increase data systems performance.

The NASA SERC is proud to offer, at its third symposium on VLSI design, presen-

tations by an outstanding set of individuals from national laboratories, the electronics

industry and universities. These speakers share insights into next generation advances

that will serve as a basis for future VLSI design.

interest in the conference has increased with 46 papers in 8 categories included in

this years proceedings. National Labor_itories are represented by Lawrence Livermore

Laboratory and the Johns Hopkins University Applied Physics Laboratory. Private indus-

try is represented by Hewlett Packard-CTG, Hewlett Packard-ICBD, Advanced Hardware

Architectures, Smith International Inc., and United Technologies Microelectronics Cen-

ter. Universities are represented by Brigham Young University, Montana State University,

Washington State University, University of Calgary, University of Western Australia, Uni-

versity of Houston, Stanford University, Ecole Polytechnique de Montreal, Concordia Uni-

versity, University of California at Davis, University of British Columbia, Portland State

University, University of Madras_ Old Dominion University and the University of Idaho. In

addition we are happy to welcome a number of papers presented by international authors.

There are individuals whose assistance was critical to the success of this symposium.

Barbara Martin worked long hours to assemble the conference proceedings. Judy Wood did

another excellent job at coordinating the many conference activities. Sterling Whitaker

organized the symposium. The efforts of these professionals were vital and are greatly

appreciated.

I am encouraged by the growth we have experienced in this years symposium and look

for suggestions that will allow a better symposium next year. I hope you enjoy your stay

in Moscow, Idaho and I extend an invitation to visit MRC research laboratories during

the symposium.

Gary K. Maki



. .ii

Session 1 - Featured Presentations I

Chairman: Gary Maki

Experience with Custom Processors in Space Flight Applications

M. Fraeman, J. Hayes, D. Lohr, B. Ballard, R_ Wi_ams and R. Henshaw

1.1

Multi-chip Modules: A High-Performance Packaging Alternative
L. Salmon

1.2

New Dynamic FET Logic and Serial Memory Circuits for VLSI GaAs

Technology

1.3

Session 2- _Si Circuit Design

Chairman: Kelly Cameron ......

Automated ILA Design for Synchronous Sequential Circuits

M. Liu, K. Liu. G. Maki and S. Whitaker :: :

2.1

Single Phase Dynamic CMOS PLA Using Charge Sharing Technique 2.2

Y. Dhong and C. Tsang: : _:=_: : _:_ .... :..........

An SEU immune Logic Family 2.3
J. Canaris

Cellular Logic Array for Computation of Squares

M. Shamanna, S. Whitakcr and J. Canaris

2.4

Fault Tolerant Sequential Circuits

Machines
M. A!ahmad and S. Whitaker

Using Sequence Invariant State 2.5



3rd NASA Symposium on VLSI Design

Session 3 - VLSI Architectures I

Chairman: Jon Gibson

YLSI Architectures for Geometrical Mapping Problems in High Def-

inition Image Processing
K. Kim and J. Lee

Performance of Defect Tolerant Set Associative Cache Memories

J. Frenzel

SPROC - A Multiple-Processor DSP IC

R. Davis

An Extended Reed Soloman Decoder Design

J. Chen, P. Owsley and J. Purvianee

An Improved Distributed Arithmetic Architecture

X. Guo and D. Lynn

3.1

3.2

3.3

3.4

3.5

g°.

• All

Session 4- Featured Presentations II

Chairman: Sterling Whitaker

An Analog Retina Model for Detecting Dim Moving Objects Against

a Bright Moving Background

R. Searfus, M. Colvin, F. Eeckman and T. Axelrod

Low Power Signal Processing Research at Stanford

J. Burr, P. Willlamson and A. Peterson

Technology Design, Simulation and Evaluation for SEP-Hardened Cir-

cuits
J. Adams, D. Allred, M. Barry, J. Silver, P. Rudeck and C. Hafer

4.1

4.2

4.3



. .iv

Session 5 - Neural Networks

Chairman: John Purviance

Pulse-Firing Winner-Take-All Networks
J. Meador

5.1

Training Product Unit Neural Networks With Genetic Algorithms
D. Janson, J. Frenzel and D. Thelen

VLSI Synthesis of Digital Application Specific Neural Networks

G. Beagles and K. Winters

Measurement Select|on for Parametric IC Fault Diagnosis
A. Wu and J. Meador

5.2

5.3

5.4

Session 6 - VLSI Architectures II

Chairman: Don Thelen

Fuzzy Control of Magnetic Bearings

J. Feeley, G. Niederaurer and D. Ahlstrom
6.1

Direct Kinematics Solution Architectures for Industrial Robot Ma-

nipulators: Bit Serial Versus Parallel
J. Lee and K. Kim

6.2

Simplified Microprocessor Design for VLSI Control Applications ..... 6.3
K. Cameron

A Modified Reconfigurable Data Path Processor

G. Ganesh, S. Whitaker and G. Maki ..........



._.<_-_raNAS_ Sy_po_i.,nonVLSZDe_ig_

Session 7 - Featured Presentations III

Chairman: Joseph Feeley

Systolic IC Array for Genetic Computation

D. Anderson

High Performance Multlprocessor Architecture for a 3-D Lattice Gas

Model
F. Lee, M. Flynn and M. Morf

Verification of VLSI Designs

P. Windley

..V

7.1

7.2

7.3

Session 8- Verification i

Chairman: Phil Windley

A New Variable Testability Measure

M. Jamoussi, B. Kaminska and D. Mulkhedkar

Controlling State Explosion During Automatic Verification of Delay-

Insensitive and Delay Constrained VLSI Systems Using the POM

Verifier
D. Probst and L. Jensen

Formal Verification of an MMU and MMU Cache

E. Schubert

Formal Hardware Verification of Digital Circuits

J. Joyce and C. Seger

8.1

8.2

8.3

8.4



•.vi
OI_(_NAL PAe_ IS
OF PO0_ qU,ea.ll_

Session 9 - Analog Design

Chairman: Earl Gray

High Accuracy Swltched-Current Circuits Using Ari Improved Dy:
nam|c Mirror

G. Zweigle and T. Fiez

A Tunable CMOS Constant Current Source
D. Theien

9.1

9.2

D-C and SmaibSi_hai _hysicai Modeis for iiae _iG_Xs/-GaAs High
Electron Mobility _nslstor
d. Sarker and J, Pfirviance

Session 10- Verification !i

Chairman: Phll Windley

Formal Specification Of a High Speed CMOS Correlator
P. Windlcy

A Verification Logic R_presentat|on o_" indetei'fii[ia|stic Signai States
J. Gambles and P. Windley

Formal Verification of State Machines

M. Alahmad and P. Windley

10.1

10.2

10.3

Session ii : _es n Innovations I

Chairman: B]ii Smith

Ui_ra Low _ower CMOS Technology

J. Burr and A. Peterson
11.1

Parallel Optimizati0n Algorithms and Their implementations in VLSI
Design

G. Lee and 3. Feeley

11.2

Canonical Multivalued InpUt Reed-Muller Trees and Forms
M. Perkowski 11.3



3rd NASA Symposium on VLSI Design ..vii

Session 12 - Asynchronous Design

Chairman: Gary Maki

Asynchronous Sequential Circuit Design Using Pass Transistor Iter-

ative Logic Arrays

M. Liu, G. Maid and S. Whitaker

Pulse Mode VLSI Asynchronous Circuits

Q. Chen and G. Maid

Improved Self-Arbltrated VLSI Asynchronous Circuits

P. Winterrowd

12.1

12.2

12.3

Session 13- Design Innovations II

Chairman: Kel Winters

A Special Purpose Silicon Compiler for Designing Supercomputing

VLSI Systems

P. Murugavel, V. Kamakoti, M. Shankar Raman, S. Rangarajan, M. Mallikarjun,

B. Karthikeyan, T. Prabhakar, V. Satish, P. Venkatasubramaniam, R. Sivaku-

mar, R. Srinivasan, S.Chandrasekhar, G. Suresh, M. Karthikeyan, S. Ramachan-

dran, S. Sankar, P. Balaji and P. Kishore

13.1

A Fast Adaptive Convex Hull Algorithm on Two-Dimensional Pro-

cessor Arrays with a Reconflgurable Bus System

S. Olariu, J. Schwing and J. Zhang

VHDL Simulation with Access to Transistor Models

J. Gibson

13.2

13.3



, .Vlll

List of Authors

Adams, J .............................. 4.3

Ahlstrom, D ........................... 6.1

Alahmad, M ........................... 2.4

.................................... 10.3

AUred, D .............................. 4.3

Anderson, D. 7.1

Axelrod, T ............................. 4.1

Balaji, P .............................. 13.1

Ballard, B ............................. 1.!

Barry, M .............................. 4.3

Beagles, O ............................. 5.3

Kamakoti, V.: ...... • ........................ !3.!

Kaminska, B ........................... 8.1

Karthikeyan, B ....................... 13.1

Karthikeyan, M ....................... ! 3.!

Kim, K ................................ 3.].

• ... ..... • ...................... . ..... 6.2

Kishore, P. : 13.!

Lee, F.... ............................. 7.2

Leei: G .... ,.. ......................... 11.2

Lee, J ............................ . .... 3_!

Lee, J. 6.2

Burr, J ................................ 4.2 Liu, K .................................. 2.1

Cameron, K ........................... 6.3 .................................... !2.I
Canaris, J ............................. 2.3

......................................2.4

Chandrasekhar, S ...... ,................ 13.1

Chen, J ................................ 3.4

Chen, Q. , ............................ 12.2

Colvin, M ............................. 4.1

Davis, R ............................... 3.3

Lohr, D ................................ 1.1

Lynn, D ............................... 3.5

Maici, G...:: ...... , ..... : .............. 2.1

...................................... 6.4

.................................... 12.1

.................................... 12.2

Malllkarjun, M: ...................... 13.i

Dhong, Y .............................. 2.2 Meador, J ............................. 5.1
Eeckman, F. 4.1 :: _= _

"' .... " .............. ''. .............. 5.4

Eldin, A ......... : ..................... 1.3 Mor£, M ............................... 7.2

Feeley, J ............................... 6.1 Mulkhedkar, D ......................... 8.!

.................................... 11.2 Murugavel ,P. :.., ......... :...:..:...13.1

Fiez, T ................................ 9.1 Niederaurer, G ......................... 6.1

Flynn, M .............................. 7.2 Olariu,:S.. : .......................... !3.2

Fraeman, M ........................... 1.1 Owsley, P ............................. ,3.4

Frenzel, J ...................... ::.:..':3.2' Perkowsl_i: M. , ............ !1.3

...................................... 5.2 Peterson, A ............................ 4.2

Gambles. J ........................... 1_0.2 r=.-.: ............... .................. 11.1

Ganesh, G. 6_4 -Prab-ha_ar,T....::.::.: .... :.::..:_:: 13.1

Gibson, J ............................. 13.3 Probst, D .............................. 8.2
Guo, X ................................ 3.5

Haler, C ............................... 4.3

Hayes, J ............................... 1.1

Henshaw, R ............................ 1.1

Jamoussi, M ........................... 8.1

Janson, D ............................. 5.2

Jensen, L .............................. 8.2

Purviance, J ........................... 3.4

...................................... 9.3

Ramachandran, S ..................... 13.1

Rangarajan, S. I3.1

Rudeck, P ........ . .................... 4.3

S_mon, L ............................ ,1.2

Sankar, S ............................. 13.1



3rd NASA Symposium on VLSI Design ..ix

Sarkar, J .............................. 9.3

Satish, V ............................. 13.1

Schubert, E ............................ 8.3

Schwing, J ............................ 13.2

Searfus, R ............................. 4.1

Shamanna, M .......................... 2.4

Shankar Raman, M ................... 13.1

Silver, J ............................... 4.3

Sivakumar, R ......................... 13.1

Srinivasan, R ......................... 13.1

Suresh, G ............................. 13.i

Thelen, D .............................. 5.2

......................................9.2

Tsang, C .............................. 2.2

Venkatasubramaniam, P .............. 13.1

Whitaker, S ............................ 2.1

......................................2.4

.6.4
,, ..,..........,.... ,.....*.''-*''''"

12.1
..,.............., °.. ,*.°..'''°*'*" "

1.1
Williams, R ............................

Williamson, P .......................... 4.2
.7.3

Windley, P ............................
I0.I

....°......... o..,,..., o.....''''''"

10.2

10.3

Winterrowd, P ........................ 12.3

Winters, K ............................ 5.3

Wu, A ................................. 5.4

Zhang, J .............................. 13.2

Zweigle, G ............................. 9.1





3rd NASA Symposium on VLSI Design 1991

N94- 18338
1.1.1

Experience with Custom Processors
in Space Flight Applications

M. E. Fraeman, J. R. Hayes, D. A. Lohr, B. W. Ballard,

R. L. Williams, and R. M. Henshaw

Johns Hopkins University Applied Physics Laboratory

Laurel, Maryland 20723

Abttract- APL has developed a magnetometer instrument for a Swedish satel-

lite named Freja with launch scheduled for August 1992 on a Chinese Long

March rocket. The magnetometer controller utilized a custom microprocessor

designed at APL with the Genesil silicon compiler. The processor evolved from

our experience with an older bit-slice design and two prior single chip efforts.

The architecture of our microprocessor greatly lowered software development

costs because it was optimized to provide an interactive and extenslble pro-

gramming environment hosted by the target hardware. Radiation tolerance

of the microprocessor was also tested and was adequate for Freja's mission--

20 kRad(Si) total dose and very infrequent latch-up and single event upset

events.

1 Introduction

The Johns Hopkins University Applied Physics Laboratory (APL) has developed a micro-

processor that is well suited to one-of-a-kind embedded applications especially in satellite

instrument control. The chip has been qualified for use in a magnetometer instrument for

the Swedish Freja satellite. The processor's language directed architecture reduced Freja

software costs because the flight hardware served as its own development system. Thus,

unlike traditional interpreted programming languages like Basic, Lisp, or Smalltalk, our

Forth language development system was fully supported on the embedded flight proces-

sor. Performance was also equivalent or better than that obtained by other microprocessors

programmed in languages like C with traditional cross-compilers and development systems.

Our experiences using Forth to program spacecraft instrumentation computers, and our

early efforts to design a 32-bit microprocessor specifically intended to execute Forth code

are described in this paper. The design, architecture, and performance of our most recent

version of this microprocessor, called the SC321, are summarized in Section 4. Discussion

of our use of the SC32 in the Freja magnetometer includes our efforts to qualify the

microprocessor for space flight. Finally, we discuss some of the lessons we learned using a

custom designed integrated circuit in space flight hardware.

1The SC32 has been commercially licensed by Silicon Composers, Inc., Palo Alto, Ca. They offer chips,

board level development systems, and support software.



1.1.2

Table 1: APL Forth-based Subsystems and Experiments

SPACECRAFT SUBSYSTEM/EXPERIMENT LAUNCH DATE PROCESSOR

MAGSAT Attitude Control 6/79 RCA 1802
DMSP

HILAT

Polar Bear

Astro-1

Freja

Magnetometer

Magnetometer

Magnetometer

Ultraviolet Telescope(HUT)

Magnetometer

(classified) RCA 1802

6/83 RCA 1802

6/83 RCA 1802

12/90 AMD 2900

8/9_ (eJt) SC32

2

2.1

Background

Forth

Forth has an extremely simple Synt_ so only a trivial parser is needed to allow it _o

run in impoverished hardware environments. Lexical properties are also simple. Forth

subroutines, called words, are delimited by spaces. The words themselves can consist

of any characters other than the delimiter. This simplicity keeps the interpreter small

allowing full featured Forth systems to fit comfortab|y in as _ttle as 8 kbytesof_memory'

Programming in Forth consists of defining new words in terms OfdX_ing words. T=he

new word is incrementally compiled and can be invoked interactively by the programmer.

Thus, the usual benefits of interpreted languages are reaped, _specia_y Slmplified iesting
and a resulting higher confidence in program correctness.

2.2 APL Space Applications of Forth

Table 1 summarizes APL's experience with spacecraft instrumentation we have developed

and programmed using Forth. [1] We have also used the language on other projects including

ground support equipment and control of laboratory instrumentation. Application tasks

ranged from relatively simple data acquisition functions to control of the complex, space

shuttle based Hopkins Ultraviolet Telescope (ttUT)--one of three ultraviolet telescopes

(all programmed in Forth) that comprised the Astro-1 mission at the end of 1990. Our

most recent instrument, a magnetometer for the Swedish Freja satellite will be described
later in this paper.

Our earliest space flight applications were based on the relatively simple RCA 1802

microprocessor. But during the early definition of the HUT command and data handling

system around 1980, it became clear that a far m6re powerful processor waS_needed to

satisfy that project's requirements. After exploring an architecture based on as many

as four TI 9900 microprocessors (the fastest microprocessor qualified for space that was

then available), we realized that a single faster machine would have numerous advantages.

The software would be easier to write and test, and more importantly, uniprocessor code

and hardware would be more flexible in the face of evolving requirements and as system



3rd NASA Symposium on VLSI Design i991 1.1.3

interfaces were more clearly defined.

2.3 The Hopkins Ultraviolet Telescope Processor

The AMD 2900 bit-slice component family was used to build a i6-blt computer that im-

plemented Forth's primitive operations directly in microcode. In the early 1980s, this was

the only way we could build a single processor with throughput that met our requirements

and that also could be qualified for use in space. Our bit-slice processor was able to com-

pile and execute Forth interactively, even on the flight unit, without needing extensive

support tools. Performance was also very good (approximately 500,000 Forth operations

per second) which allowed us to design an unusually flexible software system. The final

flight software required about 5 person-years of development time (including developing

the detailed software requirements), contained 29 cooperating concurrent processes, and

consisted of about 12,000 lines of Forth code and comments.

We gained valuable experience with Forth based computers while developing, using,

and flying the HUT processor. A fast computer that supported a compact but interactive

and extensible software development system on flight hardware had many advantages. It

encouraged the development of powerful yet flexible software while minimizing the costs of

writing, testing, and maintaining that code. However, HUT also showed that the 64 Kword

address space of 16-bit machines was inadequate for larger embedded systems. Towards

the end of the development cycle flight processor memory became too full to support an

interactive environment so we had to fall back on clumsier traditional cross-compiler based

methodology.

3 The FRISC Project

At the same time our work on HUT hardware was winding down in 1984, we were also

initiating an effort to develop experience in VLSI design. We combined our experience

in Forth computers and our interest in VLSI into an effort to develop a 32-bit Forth

microprocessor. During 1985 we developed the processor architecture that we called FRISC

(Forth Reduced Instruction Set Computer) and ported VLSI design tools developed at

several universities a 68010 based workstation.

3.1 FRISC 1

By the beginning of 1986, with tools and architecture firmly in hand, wc started detailed

design of a chip that implemented most of our ideas. This was FRISC 1, the firstin a

seriesof chips that evolved into the SC32. We targeted the 4 #m Silicon on Sapphire

(SOS) process then available through MOSIS. Wc selected SOS technology for several

reasons. First,SOS isinherently immune to radiation induced latch-upand would thus be

a candidate technology for future integrated circuitsused in flightsystems. The absence

of active-substratejunction capacitance reduces load and hence improves speed. Circuit

density isimproved because there isno minimum p-active--n-active scparation design rule.



1.1.4

Finally, on a more practical note, the SOS process was available through MOSIS at no

cost as fax as the project's budget was concerned. So the chance to get experience with

a technology with significant benefits for chips intended for use in space was too good to

pass up.

Design of the 18,000 transistor chip was completed by mid-April 1986. It easily fit

inside a standard MOSIS 7.9 mm x 9.2 mm pad frame. We used caesar for layout, lyra

for design rule checking, rnl for functional simulation, spice for circuit simu!ation, arm

the usual collection of customized shell scripts, format translators, and system utilities for

coordinating the design team's work. While the chips were being f_bricated, we built a

wire wrapped Multibus CPU board with memory and a programmable non-overlapping

clock generator board to test our parts. ............

Three months later we had our chips and began to test them. About half of the parts

that were eventually delivered appeared to function except that one data bit was always

stuck high. Unfortunately, that sp_c b it+wa_ se_y__d_di the_ instruction set to _ause the

processor to output a value, sowehad no way to inspect the contents of the chip's registers.

Microscopic analysis later revealed a spacing design rule viplatio_.n, aft_ t l!e_ inte-_rface between

the pad_ r!n__gce_ll and the.... cell containing the chip's interior logi_e. T_s err:_O_ was _ndetec+ted

because lyra flattened the layout of intersecting areas on adjaceut cells after checking the

cells indiviaually. Our design _rarcily consistedo(the pa:d ring _n o___n-_ce.ll _d _ the

other circuitry in a second ceil completely enclosedby the ring. Therefore the top level

rule check flattened the entire design and greatly ex_ceeded the ma_:imum virtual memory

space supported by our host workst_ation so our __mista_k¢ went undetected.

Despite thislayout error, one chip was fully functional and we were able to demonstrate

a full Forth system running on our own custom 32-bit microprocessor. But before we could

submit a corrected design, MOSIS aunounced that they would no longer offer, access to

SOS.

3.2 FRISC 2 ..........

At the beginning of 1987, we started to redesign our chip with the MOSIS scalable (3 #_

to 1.2 #m) bulk CMOS process. We also used the magic layout editor instead of caesar but

still depended on rnl for switch level simulation. By April we sent the layout to MOSIS for

a 20,000 transistor chip that implemented almost all of our original a_ckitecture. The _actjv_e

area for this chip, designed with 3 #m feature sizes, was slightly smaller than the previous

version but it still required a 7.9 mm x 9.2 mm pad frame. However, an inadvertently

grounded substrate prevented that part from working. Using a cpmbingtion of infrared

microphotography and careful inspection of the layout in the hot region we eventually

located the error. 2 Since we made our mistake, a circuit extractor called meztra_ was

modified at the University of Washington to specifically detect similar errors. Apparently

we weren't the first, and based on errors we've detected in other designs, not the iast group

to make a substrate connection e_YoL

2This error has since been missed by dozens of students taking the midterm exam in a JHU VLSI design
class.



3rd NASA Symposium on VLSI Design 1991 1.1.5

A corrected layout was fabricated shortly thereafter and was funy functional. The fixed

FRISC 2 could execute about 2.5 million Forth primitives per second (about five times

faster than 25 MHz Motorola MC68020 running Forth) and consumed 150 roW. However,

this performance was about twice as slow as we expected due to an incorrectly sized control

line driver.

4 The SC32

While our efforts had eventually produced a functional and usable microprocessor, we did

not reach our design goals on first silicon. In fact, we felt that our small team would not

be able to build chips much more complex than FRISC 2 with the tools and workstations

we used for that design. Furthermore, fun logical and parametric functionality would

probably be achieved only after several fabrication iterations. Our simulations were not as

thorough as we would have liked since our workstation required a day to complete a switch

level simulation of the execution of a few machine instructions. Determining the impact

of more than one or two architectural alternatives on chip speed and area was impractical.

Irregular structures such as control logic were very tedious to layout. Minor changes in

control logic would often result in days of work to resimulate and update the lay out. As

our speed problem with FRISC 2 demonstrated, these structures were also a likely source

of parametric as wen as functional errors.

4.1 Genesil

Rather than waiting several years for workstation speeds to improve before tackling more

complex chip designs, we investigated commercial VLSI design tools. Silicon Compilers

Inc. (now part of Mentor Graphics, Inc.) had just released the Genesil silicon compiler.

This was a fully integrated set of VLSI tools that let the user describe, implement, and

analyze a design at the block diagram level.

Genesil's intended market was logic designers with no VLSI experience. Yet we were

attracted to it because the compiler allowed a user to easily and quickly investigate the

implications of many architectural alternatives. We felt that the greatest improvements

in system performance could be gained by optimizing architecture while lower level en-

hancements would be of secondary importance. Any inefficiencies introduced by the high

level design tool should be more than compensated for by the better architecture that the

silicon compiler would allow the designer to develop. Genesil also automated many of the

most time consuming aspects of VLSI design so a small team would be able to tackle larger

projects. Thus we hoped that Genesil would be the better tool that would let our small

team tackle larger designs.

4.2 SC32 Design

Genesil was installed at our site by June 1987, and we started using it to explore approaches

to implementing our Forth architecture. We also enhanced our computer's architecture



1.1.6

basedon the experience we gained on our earlier designs. The greater complexity that
Genesil let us tackle with the same size team (2-3 part time people) also allowed us to

improve the architecture. By mid-November we had completed our Genesil design work

including thorough simulations of thousands of instructions. But due to delays in design

verification at Silicon Compilers, our mask level design wasn't delivered to the foundry

until February, 1988. After an extra month delay caused by problems with test vector

formats, we received fully functional tested parts in May. The next day we had a single

board computer running an interactive Forth development system.

We consider this third version of our Forth processor a complete success. It was fab-

ricated with a 2 /_m epitaxial CMOS n-well process, contained 35,000 transistors, and

consumed 660 roW. The die was 9.9 mm x 9.6 mm and was packaged in an 84 pin ceramic

pin grid array. Despite obvious _neffclencies in the overall Chip layout, the processor still

ran at 10 Mttz. Because the process0r architecture is optimized for Forth the comparatively

slow clock rate speed still executed 8:i2 million primitives per second--a throughput still

unmatched by any other 32-bit microprocessor implementation of the language of which
we are aware.

4.3 Architecture

The detailed architecture of the SC32 has been described elsewhere.[2] Briefly, the machine

has a 32 bit word address architecture and an instruction set that can implement most

Forth primitives in a single instruction. Flow control instructions specify an absolute

destination address and execute in a single cycle with no delay slots_ _he machine's

register set is organized into two top-of-stack caches with single cycle access within the

instfucti6n _se_ to the top four |0catlbns of each stack. These on-chip caches support

stack depths limited only by main memory with overflow and underflow events handled

entirely by hardware. Less that 1% overhead is added to typical Forth programs by our

approach to stack management. There are up to eight other utility and special purpose

registers allowed. The data path allows arithmetic operations between these registers to be

completed in a single cycle. A flexible ioad/S_ore _nsfructlon format transfers data between

: registerSahd memory'_nd can-_so be used %-torm _;eral values.

4.4 Performance

Measuring and comparing processor performance is always controversial--especially for a

new architecture not supported by-commonly used languages. DifFerent implementations of

Forth are also difficult to compare since there are no commonly used benchmark programs

written in that language. Finally, it is only natural to ask how a Forth version of a program

compares to an equivalent implementation in a more widely used language.

Since Forth is the only high level language available for the SC32, we took the approach

of manually translating a set of small_nteger benchmark programs from C to Forth. These

programs were C_ected by the Computer Systems Laboratory at Stanford University and

have since been translated from their original Pascal into C. They have been widely used



3rd NASA Symposium on VLSI Design 199I 1.1.7

to evaluate the performance of many computer systems.

Because the Stanford programs are small, they are generally considered "toy" bench-

marks that provide overly optimistic results in comparison to similar tests made with

larger codes. But several factors suggest that the translated benchmark suite will provide

a conservative estimate of performance running large Forth programs.

Merely translating these programs into Forth produced very poor and uncharacteristic

Forth code. Word definitions were extremely long and difficult to debug. This meant

that the SC32's efficient call/return mechanism was not used. However, our measurements

showed that real Forth programs greatly benefit from this feature of the SC32. Array and

structure accesses involved run time calculations repeated within inner loops and unnec-

essary calculations were performed. There are many optimizatlons traditional compilers

perform to minimize this arithmetic. Writing the equivalent program in Forth exposed

these excess calculations directly to the programmer. Thus the high level Forth source

code would normally be written to avoid these inefficiencies.

Finally, the algorithms and data structures used by the Stanford programs were heavily

influenced by traditional languages. A version of one of them, Tower_ of Hanoi, ran 9.6

times faster when coded with data structures and algorithms better suited to Forth than

the simple translation of the original code.

The SC32 running with a 10 MHz clock and programmed in Forth was 8.4 times faster

on the Stanford benchmarks than a Vax 11/780 programmed in C. If the multiplication

dominated in_rnm program is disregarded, then the SC32 is 9.9 times faster. The SC32 is

also 19.9 times faster than a 25 MHz Motorola MC68020 running Forth. If the MC68020

is programmed in C than the SC32 is still 1.4 times faster.[3]

Our goal was to develop a processor that could deliver the benefits of an interpreted

programming environment without any performance penalty. The data we have collected

show that this goal was achieved. Small Forth programs run at least as fast on the SC32

as equivalent C programs on traditional microprocessors. Furthermore it is likely that

this relationship will become more favorable for large programs due to the SC32's efficient

call/return mechanism.

4.5 Applications of the SC32

Several different SC32 based computers have been built at APL. A simple single board

computer was designed to demonstrate the chip. That design was later modified and used

in telemetry decommutation ground support equipment for the TOPEX and SPINSAT

radar altimeter satellites. A standalone computer system, including operating system and

utilities, based on magnetic bubble memory for mass storage was developed to show the

benefits of self hosted embedded processors for the NASA Goddard Space Flight Center.

The most complex SC32 system we have built is a VME bus CPU with full master/slave

capability. It will be used to control a balloon borne solar magnetograph. These were

interesting projects, but it was not until 1989 that the Freja magnetometer instrument

gave us the opportunity to use one of our chips in space flight hardware.



1.1.8

Table 2: Freja Magnetometer Requirements Summary

• -_.n{i-_as low pass- fiiters for DC and AC channels

- 64 Hz cutoff during normal rate (14.3 kbits/sec allocated to our instrument) telemetry opera-
tions ............ _ _...............

128 Hz cutoff during high rate (28.7 kbits/sec allocated to us) telemetry operations

0 Digitize X, Y, Z AC and DC magnetic field measurements to 16 bits

- 128 samples/see during normal rate telemetry Operations

- 256:sampies/sec during high ra--_-_e]e_y o_pera_0ns

• Oversample and average X, Y, and Z DC measurements

• Anti-alias filter one AC channel with 256 Hz cutoff and sample at 512 samples/see

• Computer amplitude spectrum 0-256 ffz for the AC channel with 512 point FFT

• Detect magnetic activity to trigger data collection in other experiments

• Collect and digitize housekeeping and status data

• Format and output telemetry

• Interpret and execute commands _

5 The Freja Magnetic Field Experiment

Freja is a Swedish satellite that will be launched into a nearly polar orbit to study the

earth's magnetosphere and ionosphere. Ex-perlments from Sweden, Germany, and Canada

will fly on the satellite and the U.S. is represented by a magnetic field experiment designed

and built at APL. Freja is clearly an international effort wffh launch schecluled in August

1992 as a "piggyback payload" on a People's Republic of China Long March rocket (barring
significant changes in the political situation).

5.1 Magnetometer Requirements

The magnetometer uses the SC32 to implement the instrument's data acquisition and

analysis system. Overall instrument requirements are Summarized _n Table 2.[4]

The conventional approach to satisfying th-e_-d reqmrements would indude-a swRcha-ble

hardware anti-aliasing filter (for the two different sample rates), a 16-bit A/D, and an 6n

board computer for status and housekeeping tasks. The processor would be programmed in

its assembly language and the code would be cross-assembled on a separate machine. The

object code would be downloaded to the target hardware for debugging using in-circuit

emulators and other support equipment. No data analysis would be performed On the

satellite but would be deferred to ground based postprocessing.

This configuration was not feasible within the resources provided by Freja to our mag-

netometer. There was neither power nor enough circuit board space for the switchable

filters. Filters would also seriously degrade the noise floor of the magnetic field measure-



3rd NASA Symposium on VLSI Design 1991 1.1.9

ments. Telemetry bandwidth precluded transmission of the 512 samples/see channel to

ground for spectral analysis. A separate digital signal processing device used to perform

this task would exceed the available power and board space. The extra hardware and

software design tasks would also have lengthened our development schedule. Finally, the

traditional approach to developing embedded computer software with cross-development

tools and in-circuit emulators was too costly due to the long edit, compile, download, and

emulate cycle.

Our magnetometer overcame these problems by using a simple fixed hardware anti-

aliasing filter, a 16-bit A/D converter, and the SC32 microprocessor. The computer

performs data acquisition and averaging, digital anti-alias filtering, FFT computation,

telemetry formatting, command interpretation and execution, and other instrument con-

trol functions. Software development and debugging were performed interactively on the

actual target hardware in a high level language. Despite the processing demands imposed

by satisfying these requirements with software, the magnetometer processor has a 50%

throughput margin when the SC32 is driven at 40% of its maximum clock rate.

Mass and power requirements were typical of small satellite experiments. The chassis

was milled from a solid block of magnesium rather than aluminum and circuit cards were

hardwired together instead of using cable assemblies. The completed instrument, excluding

probes and boom, weighed 3.5 kg. The entire instrument consumed less than 3.7 W

including DC-DC converter, sensor electronics, telemetry subsystem, and the computer

itself.

5.2 Instrument Development

Schedule and budget constraints were also quite challenging. The flight hardware and

software were delivered to Sweden in July 1991, two years after the project was started.

We estimate that the hardware and software were developed for 50-75% lower cost than a

system of equivalent capability based on a traditional microprocessor such as the 80C86RH.

The cost savings were due primarily to our use of an interactive Forth system rather than

a cross-compiler/assembler that would be needed for the conventional processor. We also

have significant doubt that an equivalent instrument could be based on the 80C86RH due

to its limited throughput, even if it were programmed entirely in assembly language.

The productive software development environment provided by the SC32 was a key

factor in quickly completing the instrument. Forth's interactive capability greatly assisted

hardware debug and and subsystem integrations. The flight code was extremely compact,

in source (9.500 lines) as well as object form (16 Kwords including operating/development
system). Small code size was due to two factors. First, our real time scheduler allowed

the program to be organized into 8 cooperating tasks. Each task was simple and easily

programmed especially when compared to the alternative of a single monolithic piece of

code. Secondly, Forth's extensibility meant that program size grew logarithmically as

complexity increased. Essentially Forth was used to develop a new programming language

specifically oriented to the problem domain. Therefore programs that solved tasks in that

domain were very compact. Because of these characteristics of Forth, one of us (Hayes)



1.1.10

was able to write the magnetometer flight software in only two months. The magnetometer

was delivered in July 1991 and has since been integrated with the other Freja subsystems.

We were the first of the seven experiments on Freja to deliver fully flight-ready hardware

and software for satellite integration. No flight software changes have yet been needed.

5.3 Radiation Testing

Much of the development of our instrument was affected by considerations of the natural

radiation environment in Freja's 600 km x i700 km high inclination orbit. During the two

year Freja mission, we expect to receive a total radiation dose of 12 kRad(Si). Radiation
induced latch-up and single event upset (SEU) soft errors also cohcerned _.

The Freja magnetometer CPU board contains the SC32, two 32 K x 32 RAM m0duies,

two 32 K x 32 EEPROM modules, two 82C54RI-I timer chips, and 52 SSi/M_i parts. _he

RAM and EEPROM parts were chosen because other APL flight programs had determined

that their radiation characteristics were acceptable _ Freja_s orbit. T-he 82C54RH radia-

tion tolerance was guaranteed by its manufacturer. SSi/Msi logic from the 54AC00 family

were used for the support chips because they were also known, again due tO information

from other APL flight projects, to work in our environment. We had to establish the
radiation characteristics of the SC32 ourselves.

5.3.1 Total Dose

Two different SC32 fabrication lots were evaluated for totM dose characteristics using our

in-house Co 60 facility. Exposure was performed at a rate of 1 kRad(Si)/min with bias

and a low speed clock applied to force the part into a known state. Bias current _s

monitored during exposure. Component functionality was aSSessed w]tiain 1-2 min after

each radiation exposure using a standalone computer board executing SC32 diagnostics.

Testing required no more than five minutes after each exposure step, thus annealing effects
were minimized and the entire test was completed within an hour_

The first lot, obtained from Our c0rhmerciai licensee, was i'uily i_unctional arid within

parametric limits beyond 15 kRad(Si) for all five parts tested. The mean total dose toler-

ance of these parts was 19.9 kRad(Si) with a variance of 4.8 kRad(Si). Full functionality

returned overnight to all tested parts from this lot after annealing at room temperature
with no bias applied.

Tide other par(iotW_s_;upp_ed directly b_Y-ou_foundry and hadbeen packaged ac-

cording to Mil-Spec-883B. Our reliability group performed a pre-cap visual inspection of

these parts at the foundry and found their quality was excellent and that these parts could

easily be upgraded to higher reliability levels through APL's in-house testing and screening

procedures. Unfortunately, a process change to improve yield in the two years since the

first lot had been built degraded total dose tolerance. Three parts from this lot all failed

at slightly more than 5 kRad(Si) when tested with same procedures used with the first

lot. An additional three parts were exposed to 1 kRad with two days between subsequent

exposures to more nearly simulate the radiation environment of the Freja orbit. These



3rd NASA Symposium on VLSI Design 1991 1.1.11

parts also failed at 5 kRad(Si). Room temperature unbiased annealing has only restored

functionality to two of these six parts.

Because of the disappointing total dose behavior of the second batch of parts, we were

forced to obtain our flight parts from the first lot. Several factors allowed us to upgrade

these commercial parts to space flight quality. The positive report on our foundry's quality

control was encouraging, both commercial and Mil-Spec parts were packaged in the same

high quality ceramic pin-grid array package, and all lots were assembled with the same

equipment and personnel at the foundry. So commercial parts from the first lot were

extensively screened at APL and passed all tests.

5.3.2 Latch-up and SEU

Radiation induced latch-up and and SEU sensitivity of the flight part lot were also eval-

uated. Initially, SC32 parts were screened for latch-up sensitivity in an in-house Cia52

chamber. This equipment exposed the die to heavy ions with a mean linear energy trans-

fer (LET) of 36 Mev-cm2/mg at a high flux rate. The SC32 did not latch during a 30

minute exposure. Subsequent work showed that many other chip types also did not latch

in the Cias2 chamber.

However, later tests made at the Single Event Upset Test Facility of the Brookhaven

National Laboratory Tandem Van de Graaff accelerator cast doubt on conclusions about

latch-up sensitivity based on Cia52 data. Using the Brookhaven equipment we were able

to gather both radiation induced SEU and latch-up sensitivity of the SC32. The chip did

latch-up with an LET threshold of 15.6 Mev-cm2/mg which corresponds to about 1 latch-

up per 21 years in the Freja orbit. An SEU threshold of 5 Mev-cm2/mg was also observed

which was estimated to be equivalent to one soft error every 166 days in our orbit.

These radiation testing results led us to add latch-up protection circuitry to the DC-DC

converter. If excessive current is drawn by the SC32, the CPU board will be momentarily

turned off thus resetting the latched circuitry. After power is restored the computer will

resume normal processing.

SEU events are more difficult to detect and their impact can be more subtle. An SEU

could disturb the program controlling the processor or it could invalidate a single word

of science data. Because an SEU is only expected every few months, it represents only

a minor error in the collected data and will be ignored. Program errors will be detected

by a watchdog timer that must periodically be updated. An SEU induced program error

will most likely be detected by a failure to properly access the watchdog. In response,

the watchdog will reboot the system. Both types of radiation induced error should occur

rarely enough that these correction strategies will not significantly degrade the quality of

the magnetometer data.

6 Conclusions

Because the SC32 was originally designed as a research effort and was only manufactured

by a commercial foundry, many questions had to be resolved before we could use it a space



1.1.12

based instrument. Reliability concerns were greatly reduced after a site visit to the foundry

showed excellent manufacturing procedures were followed. A thorough screening of parts

from the flight lot has also added to our confidence in the reliability of the SC32.

Radiation tolerance of our chip was also studied. Early testing of our prototype chips

indicated they would meet our needs. Commercial versions of our chip manufactured

shortly thereafter were fully evaluated and had acceptable radiation tolerance. However,

the foundry modified the manufacturing process to improve yield in the interval between

when our prototypes were evaluated and when we ordered Mil-Spec chips for our instru-

ment. This process change had the unfortunate side effect of diminishing total dose tol-

erance to unacceptable levels. Unless a foundry rigorously controls those aspects of the

process that impact radiation tolerance, performance may vary significantly between lots.

We have shown that a Forth language directed microprocessor with hardware and soft-

ware optimized for embedded systems can significantly improve spacecraft instrumentation.

Because of the capabilities of the magnetometer's computer based on the SC32, an instru-

ment of unprecedented c_pability was developed at far lower cost than could otherwise be
achieved.

The most important lesson we have learned from this work is that a custom integrated

circuit of the right architecture can deliver substantial benefits even when only one chip is

needed. System performance tHa_ _S =unrea_a_wlt_h=catalog components can_0e ac_eved

and qualification issues can be resoIved. Most=surprisingly, system=devel0p_nt c0s{g can

be reduced by using custom chips, gavlngs _rom deslgnJng fewer_drcult b0ards, Consiim-

ing less power, buying fewer expensive flight components, and most importantly greater

software productivity easily balance the additional costs of developing and qualifying the
right custom integrated circuit.

7' Acknowledgements

In addition to the authors, Susan Lee, Susan Waters, Mary Wong, andTom Zaremba have

all contributed to this work over the past decade. We greatly appreciate the advice and

assistance received from many people in APL's SOR group in making our instruments

as reliable as possible. The many talents our shop groups contributed to this work were

also vital to our success. Finally, we would like to thank Larry Zanetti, the Freja mag-

netometer's principal investigator, for encouraging us to use the SC32 in his instrument,

and oui management, particularly Jay Dettmer and Tom Zaremba, for their support+and

encouragement of Our efforts. = =

References

[1] B. Ballard and J. Hayes, Forth and Space at the Applied Physics Laboratory, Proc.

of the 1991 Rochester Forth Conference, Inst. of App. Forth, Rochester, N.Y., June
1991.



3rd NASA Symposium on VLSI Design 1991 1.1.13

[2] J. Hayes and S. Lee, The Architecture of the SC32 Forth Engine, ,/. of Forth App.

and Res., V5, N4, pp. 493-506.

[3] M. Fraeman, Performance Evaluation of the SC32 Stack Microprocessor, Proc. of the

I989 Rochester Forth Conference, Inst. of App. Forth, Rochester, N.Y., June 1989.

[4] R. Henshaw, B. Ballard, J. Hayes, and D. A. Lohr, An Innovative On-Board Processor

for Lightsats, Proc. of the 4 th AIAA/USU Conf. on Small SatelliteJ, AIAA, August

1990.



: !



3rd NASA Symposium on VLSI Design 1991 1.2.1

Multi-chip Modules:
A High-performance Packaging Alternative

L. Salmon

Brigham Young University

Abstract- Multl-chip Module (MCM) packaging has emerged as an important

technology for high-performance electronic systems. Benefits of MCMs in-

clude: high IC packing density, low interconnect propagation delay, excellent

power dissipation characteristics, and low cost. This paper will review MCM

substrate fabrication, testing, and design. Major challenges for MCM imple-

mentation in hlgh-performance systems will be discussed. Finally, applications

of MCM technology to current high-end computer systems will be reviewed.





3rd NASA Symposium on VLSI Design 1901

N94-18339
1.3.1

New Dynamic FET Logic
and Serial Memory Circuits
for VLSI GaAs Technology

A. G. Eldin

Electrical Engineering Department,

The University of Calgary,

Calgary, Alberta, Canada.

Abstract- The complexity of GaAs FET VLSI circuits is limited by the maximum

power dissipation while the uniformity of the device parameters determines the

functional yield. In this work, novel digital GaAs FET circuits are presented

that eliminate the dc power dissipation, reduce the area to 50°_ of that of

the conventional static circuits and its larger tolerance to device parameters

variations, results in higher functional yield.

1 Introduction

GaAs technology is used in the fabrication of ultra fast digital integrated circuits. The

availability of such circuits is critical for many applications such as Gigabit communication

systems and super fast computers [1]. The GaAs FET is fundamentally different from both

the MOSFET and the bipolar transistor. Figure 1 highlights these differences.

(3 GaAs FET

Q

Voltage driven

Low Rin
|
t

Vin is Clamped .

to (0.6 - 0.7) volts
Vin is the driving i
signal

(3 Bipolar

(3 Current driven

Q Low Rin

(3 Vin is Clamped

But IB is the
driving signal

!
(3 MOSFET

(3 Voltage driven

_ (3 Highi Rin

(3 Vin is limited by

, the gate oxide
breakdown voltage

Figure 1: Fundamental differences between devices

Because of these differences, the bipolar and MOS logic families and circuit techniques



1.3.2

v_

0:L 
Direct coupled
VET Log_

Vdd

FETLog_

Vdd

Buffered FET Logic

SCFL

FET Log_

Figure 2: Static GaAs FET logic families

Because of these differences, the bipolar and MOS logic families and circuit techniques

will be less successful if applied directly without modification to the GaAs technology.

Figure 2 shows the most commonly used static GaAs FET logic families [1].

In any of the tWO [ogi_ S_{_;: _ these circuits will dlss_e _ powerl T_Lis dc compo-

nent accounts for 90% of the total power [2]. The power dissipation limits the maximum

number of gates to 15,000 assuming a maximum allowabie chip power of 5 watts [2]. On

the other hand, the ratio of the threshold voltage variation to the noise margin is critical

for determining the IC electrical yield. It is shown that if the threshold voltage variance

is changed from 90 mv to 150 my, the circuit size should be reduced from 10,000 to i00

gates to maintain 50% yield i2]. This illustrates that the threshold Voltage must be tightly

controlled for acceptable yield. In this paper, a novel circuit technique [3]-[6] is applied to

GaAs I:IFET technology to overcome these two main limitations. The new memory and

logic circuits do not dissipate any dc power, are less sensitive to threshold voltage variation
and have Very small size.



3rd NASA Symposium on VLSI Design 1991 1.3.3

2 The D-Type Flip Flop

An intermediate stage of a dynamic shift register is shown on Figure 3 a. The D-type flip

flop uses depletion type transistors with threshold voltage of (-0.7 volts). Figure 3 b shows

the clock and input waveforms and the logic levels.

Vin 01 Vou |

---I J4
C2 4

Phi2 1 - 3 - -7"--

_ Phi2

\ / \ /
Master S/ave

(a) (b)

Figure 3: M/S dynamic D-type Fllp Flop (intermediate stage)

During tl, Phi2 = 0 volts. The master section is in the sample phase. The input data

is stored on the capacitor C1. It is charged to 2 volts or discharged to 0 volts for V/,

being logical 1 or 0 respectively. The capacitor C2 is precharged to approximately 3.5 volts

through J2 (Phil = -3.5 volts). The slave section is in the evaluation phase. Transistor

,/3 is cut off and the drain voltage of J2, VD2 = 0 volts, thus providing a reference voltage

for evaluating the stored data on C3. If C3 is charged, ,14 is turned off and the precharged

capacitor C4 retains its voltage to represent logic 1. However, if C3 is discharged, J4 is

turned on and C4 is discharged to represent logic 0. During t2, the roles of the master and

slave sections are interchanged. Figure 4 shows the output stage of the shift register.

The capacitor C4 is replaced by a pull up device for interfacing with static logic (DCFL).

The simulation results for the output stage are shown in Figure 5. The device model

accounts for the second order effects and is accurately calibrated to a 1 um HFET process.

Figure 5(a) shows that V_t is delayed by one clock period with respect to Vi,, which verifies

the operation of the D-Type flip flop at 2 GHZ. Figure 5(b) shows the waveforms VD1, VD2

and VD3 which correspond to the drain voltage of J1, J'2 and J3 respectively.

Table 1 compares the dynamic and static (DCFL) implementations of the D-Type flip

flop.

Each section of the DCFL (M/S) Flip Flop uses two inverters for the static memory

cell, two depletion transistors (clocked transmission gates) and two DCFL super butters,

as shown in Figure 6, to properly buffer the memory cell from the direct and capacitive

coupling caused by the clock signals driving the transmission gates. This DCFL imple-

mentation requires 24 transistors of both depletion and enhancement types. Table 1 shows



i .3.4

Vin

Phi2

Figure 4: M/S dynamic D-type Flip Flop (Output ,tage )

=

Dynamic FF

0.4 mw

Static FF

4 mwPower

Number of 4 transistors

devices 4 capacitors 24 trnsistors

Relative area 0.3 i

Noise margin

(NM) 500 my 200 my

: :7:7 7 :

Table 1: Dynamic and static iinpiementations of the D-Type flip fldp



3rd NASA Symposium on VLSI Design 1991 1.3.5

2.5

2._-

1.o_

o.s5

o.o_

.o.s_

-1.0:

-I ..5

-2.0-

-2.5-

-3.0-

-3.5

: : -" : : .... _.

.__ ___, ........ , ........ •.......... _ ........ :........ ,........ _..-_-.o_..! ....... ,:........ :........ :../,,----.
: i: : : : : ! ! r." : _: : !
: 'i i i "_L.. •• .:"......... _ ...... : ....... -:..... zi ........ •....... ,"....... :- ....... :-: ...... _- ...... : .........

........ " ...... _" ....... "........ ".............../ :i........ / : : t : _ _ ; ! /, t i : , : ".......................
. ..; .... ,l ...... ;......... : ....... IV ...... ":....... "1 ...... "_....... ".---r'-: ........ ! ........ "i ...... "........ : J: :

: ::'l :. _ i : ....... :,....... :........ ,...I....i ........ "-,........ ',:_.'.,_ ........ _....... _................!........
........ '........ .f',"'_" ........ "'"']'"':'" .... _........ :_ i : t : : :, _/_ :

___ !__..__-: :_ : -.:__;___ ....
__'.--";'--."-',.":.".'"" ......._'v _ .....i......", ' _ _ _ :

• i: - : :_ _. : .::1 : " ""F" " : I : :f: -: :
: ; • ¢ • . ..:. ;:...;: ........ : ...... _.:..f-,..- ....... :--I ..... -....... _...... i"'T"'-': ....... :"l:'"'" ........ :........

........ "...... .-"1"'"!'" i :- .i i _': ! i i I f: : :: , : : ,_ ii !

i !_' i ..... i.._:'_.i......._ . ./.;._.t......_........_...t..:.;........;......;i; ....._........_...X'..,-:.....::x::::::--
........ • ....... :'! ..... ."" • i'_: ..'"': ..... tt : : I:: : ,t _ _ t_ ."" :

: _ : ;:.:: : _t : : It : : _l : : t;_:: :
................" .d"......... " : "t" "" " :1..............' :'"" "_,"": ........ :....... "_,_.................... _": ....... : .......

:." :l :." i""'_-':t:_l.......:':........._, : : _. : : i_': i _ _ :V"_ ::...........................................i.....i........i....................::,
........ .; ..... _ i it : : !; ;.i _ I. ! i ili "

: I" : : " : : [. : , ...1; ........ ; ....... g..1... : .... "_'","l'_ ........ I ........
........ _....... r.._...... _......... _...!..1., ........ _....... i:.. t ...... :........ _.--t I. "- • •

• • t l" : . . : .. : l: i : • _ I: "
: l: i " _ • ti : t: t : : • 1: : I: " : : i : :...... :,......I_ ......-........ :..!-...,"........ :...... t.;..i..--÷....... "..;..-4!........ . ......r!_ "÷ ....... :.;1i ........ !........
: :- : i: " : :." : :: " : : ' i : " =. I. * . • _ : I. I • ._ t " I" • " :i _ "

.... :,,,/,i. ,',, :,.... _',. ,i .... ;,, ,f.i, ,',, ;.... i,, ,,_ .... _,', i. ,',,, ,,...,_,,, :',_..,,.,: ,_-,:
o o:_ o._ o_ o._ o._ o.o 0.7 o._m,o.9 _.o _._ _._ _.3 _., _._ ,._ ,

(a)

2.5 : : : : : : : : i :

:! iii !i
;._ i.......+ .....i..... i " + .,. .
0.5= ........ :!...... ""!: ....... ::.......... _:.....*"'" :"'"";• : .......... ;_........ ;':........

• • ; • • _.. . •

! .: : !--...: _" ._- i ""
o.o. ......_.... , ;'?"7."

: b': :-- " l-__- _/......i ........
_'_" .......i....._:-.: _Y i

" __: ....... i........
-1.0: .-_ ...... _._" ..... _ ..... _..... :0 ...... ",',';,',',',',';"_ ....... ":........ '1...... i" """" ........ : ..... "J'! ..... :::'::::::

• . _ : -_ ..'" : t : : . : i ; _ : ) : -"" :

; _ : : _ :" : ........... _ ....... : ... : -: ........ : ....... _ ..... ._..,;._._../,_.:-" ...... : ........
-1.5- ......... - ...... ----,_,,_;';.'_'_'_ -'L: .......... ' ' • " " " ' " " :

! "., _ : i _ : I i i i !" : : ! _ i
.... : * : :t . " • " " "I " J i ; ...............

-2.0- • _.t . .? ....... t ..................... • .............. :""d"': ........ : ........ : ...... '_ ....... "*'" " " "
....... "_........ • • • • :t : • . , " " I ' "

: i_ : : _ : : "_ ' : t : ! i_ _ : - : :
,. .. : : - : : : : • . • • .- ....

°2.5.- ........ _ ....... "-:--_..... <........ {'"t"" .1........ _........ "_'i.............. ;.'"t""! ........ ._........ :, .1.....-.: ........ ?--;-.--_. ........ _........

: :' i i t _ _ i _ : : i : : ! : i ! ; i i
• " I " : : : - . . * " - ' .I.... " ....... _......... , ........ ; ........

._.o......... ._.......t;"'_ ........ !"; ....._........:"........:'":"'T .......i: ............. i ........i; T _ : _
-3.S : : I - , ........... i_,,,; .....

OO'''(9"l''_'01"2''''O"3''{):'4''Ois'''()l'6''()!7"'()!Sm():gf'-Tle :1'.0' :1:1' :11.2' ':1_3' 1.4 "1.5 '1:6' "1

(b)

VOUT
¢2
..- VIN
#2
----- VPHI1
#2
..... VPHI2
#2
....... VD3
#2

(x 1E-g)

..... VPHI2
#2
....... VD3
#2
-- VD2
#2

;-- vo_

(x 1E-g)

Figure 5: Voltage waveforms of the M/S D-Type Flip Flop



1.3.6

•25 L

UI4 _ i

21
i

L_

-i.J
,2S

L5

p2'_

Ip

!;

INI_ 3;

" I_I I1_ "1 11-74

>O_ >

Figure 6: DCFL implementation of one section of the M/S D-Type Flip Flop

that the dynamic circuit has significant savings in both power dissipation and area. The

larger functional yield can be measured by the ratio oirthe threshold voltage Variation t.o

the noise margin. Figure 5 shows that Vvl swings between-i.9 and 0 volts with a threshold

voltage of-0.7 volts. This relatively large noise margin makes the circuit operation les_

sensitive to threshold voltage variations and results in a larger functional yield.

3 og_c c_rcmts _mplementat_on

The basic dynamic circuit can also be used to implement the AND, OR, and complex logic

functions. The operation of the basic circuit is similar to thai oFt-he d_,namic i_p tiop.
Figure 7 summarizes the operation.

Discharged ON

Charged OFF

Figure 7: Basic dynamic logic circuit



3rd NASA Symposium on VLSI Design 1991 1.3.7

'A B C1 C2 J1 J2 F

i 1 charged charged OFF OFF 1

Phi2 Phi2

Figure 8: The dynamic AND function

When the input is logic 0, the capacitor C is discharged during the sampling phase and

the transistor ./2 will turn on during the evaluation phase. Similarly, if the input is logical

1, the capacitor is charged during the sampling phase causing J2 to turn off during the

evaluation phase.
An AND function is realized by connecting two cells in parallel as shown in Figure 8.

During the evaluation phase, the output will remain charged (representing logic 1) if both

J1 and J2 are turned off. This corresponds to A = B = 1 during the sampling phase. Any

other combination for the values of the inputs A and B will result in at least one of J1 or

J2 being turned on and causing the output to correspond to logic 0.

The OR function is implemented by connecting cells in series as shown in Figure 9.

During the evaluation phase, the output will be discharged only if both J1 and J2 are

turned on. This corresponds to A = B = 1 during the sampling phase. If A or B is logic

1, at least one of the transistors J1 or J2 will be turned off during the evaluation phase.

This causes the output to remain charged and correspond to logic 1.

Complex logic gates can be realized by parallel and series connections of the basic

circuit as shown in Figure 10. In this example the output F will remain charged during

the evaluation phase if either (C and D) are logic 1 during the sampling phase or (A and

B) are logic 1. This ensures that there is no _discharge path from the output to ground

during the evaluation phase.

It is seen that these logic circuits do not dissipate any dc power. Also, since only one

type (depletion) of transistors is used, the circuits are less sensitive to process and threshold

voltage variations. It is noted that when the clocked depletion transistors are turned on,

Vcs = 0 volts and the transistors do not draw any gate current. Vas can be increased

to about 0.4 volts, which will keep the gate current negligibly small while increasing the

driving capability of the clocked transistors and the noise margin of the circuit. This will

also enhance the operating speed.



1.3.8

A_

A B C 1 C2 J1 J2 F

0 0 discharged discharged ON ON 0

L : -

CI _ | P--_hil

Phi2

Figure 9: The dynamic OR fu_nction

ql D

Phi S

Phi2

C " _:_
-- D

Phi S_

Phi2

F = AB + CD ......

_L o
1-Phil

.......
: =

O I --

S Phi : -

Phi2

Figure 10: The dynamic Complex Logic gate



3rd NASA Symposium on VLSI Design 1991 1.3.9

4 Conclusions

The new dynamic circuits eliminate the dc power and have large noise margin and small

size. Compared to the static implementation using the DCFL, the use of the dynamic

circuits results in (50-70)% reduction in the area. The noise margin and therefore the

electrical functional yield is increased by a factor of 2.5 and the total power dissipation is

reduced by 90% at a switching speed of 2 GHZ. These significant improvements allow an

order of magnitude higher level of integration with acceptable functional yield and power

dissipation.

References

[1] S. Long and S. Butner, Gallium Arsenide Digital Integrated Circuit Design, McGraw

Hill Publishing Company, 1990.

[2] S. Long and M. Sundaram, Noise-Margin Limitations on Galllum-Arsenide VLSI,

IEEE J. Solid State Circuits, Vol. 23, pp. 893-900, August 1988.

[3] A. Eldin and M. Elmasry, VLSI Dynamic Memory, United States Patent # 4,791,611

Dec. 13, 1988.

[4] A. Eldin and M. Elmasry, New Dynamic Logic and Memory Circuit Structures For

BICMOS Technologies, IEEE Journal of Solid State Circuits, Vol. SC-22, pp. 450-453,

June 1987.

[6]

A. Eldin and M. Elmasry, New Dynamic Logic and Memory Circuit Structures For

BICMOS Technologies, Twelfth European Solid State Circuits Conference, Tech. Dig.,

pp. 4-6, Delft, The Netherlands, September 1986.

A. Eldin and M. Elmasry, A Novel JCMOS Dynamic RAM Cell For VLSI Memories,

IEEE Journal of Solid State Circuits, Vol. SC-15, pp. 715-723, June 1985.



, , r

L

z

F_

w_



3rd NASA Symposium on VLSI Design 1991

N94- 18340
2.1.1

Automated ILA Design
for Synchronous Sequential Circuits

M. N. Liu, K. Z. Liu, G. K. Maki and S. R. Whitaker

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - This paper presents an ILA architecture for synchronous sequential

circuits. This technique utilizes linear algebra to produce the design equations.

The ILA realization of synchronous sequential logic can be fully automated

with a computer program. A programmable design procedure is proposed to

fulfill the design task and layout generation. A software algorithm in the C

language has been developed and tested to generate 1 um CMOS layouts using

the Hewlett-Packard FUNGEN module generator shell.

1 Introduction

The design of sequential circuits presents a major task for most digital systems. As Very

Large Scale Integrated (VLSI) technology advances, developing an architecture to maxi-

mize the e_ciencies of all the design steps becomes a major goal in the research of sequential

circuit design.

This paper introduces the Iterative Logic Array (ILA) as a new architecture for syn-

chronous sequential circuits. This architecture realizes a sequential circuit by replicating

simple basic modules. With an ILA architecture, a sequential machine can be built into a

very regular form automatically by a computer program with a single type of ILA mod-

ule. The simplicity and programmability of the ILA architecture significantly reduce the

design task in all stages of VLSI implementation, from logic design, circuit design, artwork

generation to verification.

2 ILA Architecture

Iterative Logic Arrays (ILA) have been described in the literature for quite some time [1,2].

An ILA circuit consists of an array of identical cells. Generally, as shown in Figure 1, each

ILA cell contains two sets of input signals. One set of inputs are applied in parallel, while

the other set of inputs are driven by adjacent cells. Signals normally propagate in only

one direction between cells, and outputs are derived only from the serial outputs of the

last cell.

In an ILA architecture for sequential circuits, the next state of each state variable is

generated by a slice of concatenated ILA cells. A sequential network is then constructed

by placing the ILA slices side by side.



2.! .2

Input ° Cell 1

Parallel Input

"l ,
! -[ I..eu n [

Figure 1: A slice of ILA circuit

Serial

Output

S

0f
5

Figure 9.: Pass transistor 2-to-1 MUX

The basic cell of an ILA sequential network consists of a 2-to-1 multiplexer (MUX) a_d

a next state forming logic. A MUX cell has a select line S, its complement _ _d tWo:data

inputs l0 and/1, and a logic function defined by Eqha.tion 1.

(1)
The simplest way to implement the MUX function is to use a pass transistor circuit,

Basically, the pass transistor MUX, excluding level restoration logic, is a module Of two

pass transistors, which functions as two simple switches. Figure 2 shows the circuit of

two inputs I1 and I0 and one output Q controlled by two controi lines S and _ which

are assumed to be asserted exclusively such that only one of two inputs/1 and i0 can be
passed to Q at a given time.

Some details in pass transistor transmission characteristics are omitted here. Design

considerations, such as level restoration, are assumed to be handled b_ihe output buffers.

The circuit design considerations have been discussed in [3,4,5 ].

3 Operational Functiori

_In thisrese-axc]_, theone:hot--code is utilized as the state assignment for a synchronous flow

table. With the one-hot-code assignment, there is a unique state variable c6rrespofiding

to each state. That makes it possible to express the design function using the states in

the flow table explicitly. A new form of mathematical expression is proposed next which
describes a flow table directly by flow table states.

J

z

L

L



3rd NASA Symposium on VLSI Design 1991 2.1.3

flow table of n rows and m columns.

the flow table.

Definition 1 The set of operationalfunctions is the behavior description of a synchronous

Each function is an equation for a nezt state Si in

m

L = _ s,,z, (2)
p=l

where sip is an OR function of the states Sj,Vj = 1,...,n, which have Si as the nezt entry

under input Ip.

and the operational function.

can be expressed as

It can be shown that there is a one-to-one mapping between the next state equation

r, : _/,,z, (3)
p=l

With the one-hot-code state assignment, each "r-partltlon

= {s,;s}
which partitions a single state Si from the rest states S in the flow table. The number

of state variables is equal to the number of states. Next state y-partitions can be formed

using known procedures [6]. If an y-partition r/i is

_ = {SlS_...&; S}

then it is well known that

On the other hand, Equation 2

lip = Y, + Y2 + "'" + Yi.

m

p=l

can be mapped into a next state equation as Equation 3 if the one-hot-code assignment

is used where flp are sum of the state variables yj corresponding to sip in Equation 2.

Therefore, there is a one-to-one mapping between Equation 2 and Equation 3.

Since the operational function is a direct representation of the flow table, they can be

derived by inspection. For each state in the next state entry, there is a product term of

the present state and input state in the operational function. If a synchronous machine

is specified by a state diagram, the state diagram may need to be converted to a flow

table, though it will not be too hard for an experienced designer to derive the operational

functions from the state diagram directly.

Table 1 is the flow table of a state machine with four states. For example, State S,

appears as the next state entry of states Sb, S¢ and S,t under I1. Therefore, the operational

function for S, is

_o = (& +so + sd)xx.

For State Sb, it appears as the next state under both I1 and/2. So the operational

function for state Sb is

_ = soz_+ (& + so)z_.



2.i.4

/i _ /3

Table 1: A synchronous flow table for the state diagram

The operational functions for state Sc and Sd can be derived in the same way.

together, the operational functions for Table 1 are as follows:

_o = (s_+ sc+ s_)h

= sJ1 + (& + &)I2
_o = (s.+ & + Sa)r_

Sa -- (So 4-Sd)I2 + (S_ + Sd)I3

All

(4)

4 ILA Architecture for Synchron0us Sequential C|r-

cuits

A simple regular ILA structure requires:

• The design equation is convertible to a pass logic function where each control variable

passes a single pass variable or a constant ......

• The control variables are shared with each pass logic function.

With such a structure, if the pass variables in each equation are the same, the signal bus

to each slice of ILA circuit can be minimized to a single wire.

If state Si is used as the control and Si appears as a next state under only one input

Ip, then I t, can be the only pass variable in the design equation for Si. For example, the

equation for ._ in Equation 4 can be converted into a pass logic function with input/1 as

From the definition of the operational function in Equation 2, if Si appears only under

input Ip, then Equatiog 2 can be rewritten as:
_ 2 2 2 _2_ : 2222Z 2 2 : 2:2 2

wheresip is an OR function of the= states Sk, k E {i,2,...,n}. Therefore, Equation 5 can
be written into:



3rd NASA Symposium on VLSI Design I991 2.1.5

_$1 Q_- D flip flop D_I

___-- Q

s.

Q

D flip flop D _'n Q

I I I I

ss  ,iLAceu1 _ 1 1 Ip

t .. • ILAcell
0 i q 0

I

S Srt S sn

I I • I I

I I • I l
S SII ! I S $n _[-q1-_--4 t---- 1 1_

I .. • I ILAcell
ILA cell0 ._...._t _ Q 0

t t 0
s sn s sn

$1 Sl S,,

Figure 3: The general ILA structure for synchronous logic

or in a form of pass logic expression:

Si = $1(9111p)-[-Sl('''Sk(_ikfp) + _k('••(S.(.qin/p)-[-_n(O) •").

where

(7)

1 if Si is the next state of Sk under lp91k = 0 if Si is not the next state of Sk under Ip

Theorem 1 The architecture depicted in Figure 3 is a proper model for a s_lnchronous

sequential circuit.

Proof: The proof follows directly from one-hot-code assignment that one and only one

state variable are active at a time and Equation 6 contains only one input state. Clearly,

the architecture realizes Equation 6 by placing a multiplexer under Sk where gik = I and

a wire under Sk where 9ik = O.

[]

To accomplish the ILA structure, S; must be restricted to appear in a flow table under

only one input Ip. If a state Si appears as a next state under both Ip and Iq, S_ has to be

split into two different states. For example, in Table 1, state Sb appears under both input

/1 and I_. It is necessary to distinguish Sb with two unique states S_1 and Sb2 where Sbl

represents the S_ under/1 and Sb_ represents the _qb under/2. Similarly, state Sa needs to

be split into Sd2 and Saz. A revised flow table can then be obtained by splitting all states

under different columns. Table 2 shows the result_ ....

After updating the flow table, the operational function for each state can be derived

in the same way as before. For example, Sb2 is the state under/2 only. Therefore, its

operational function is

'-_b2 = 0 -4- Sbl_2 -1- Sb212 -_- ScI2 + 0 + O.



2.1.6

s.
&1
&2
&

&2

/1 /_ /3

so &2 so
s. _2 s_

Tab!_e 2: A revised flow table

All other operational functions _e Mso in the same form. The results are shown as follows:

_. = o + Sb,.r, + Sb2-r,+ So_r1+ Sd2-r,+ Sd3I,

Sb,= sJ, + o +o ±o +o + 0

_ -_o + S_lX_+ sb_I_+ sj2+ o + o
So = s.13+ sb,_ + .¢_ o +o +o
Sa2= So12 + 0 + 0 + 0 + S_212 + Sd312

Splitting states in a flow table allows all of the p_s variables in an operational

to be the same. The disadvantage of splitting states is that it generates additional next

state equations. Increasing the numb-erof e(lukt-i0ns- impff_]ncreasing the aie_,'in's:_li'con.
It is a trade off by gMning programmability and regularity ofth_-IL-A_aliza-tion-_-ersus

cost. An automated sequential circuit design will significantly reduce the design effort and

speedup the process of imp!ementgtjpn: ...........................................

5 The Matrix Expression

The operational functions discussed in preyious sections can be efficiently expressed with

matrices. The matrix will also help to implement the function in silicon. With Equation 6,

a synchronous sequentiM circuit can be expressed with a set of equati0n_s:

D

n

k--1

Such a set of equations are equivalent to a matrix expression:

S--AxGxS (8)

i

|
|

i

=

L



3rd NASA Symposium on VLSI Design 1991 2.1.7

where matrices S are S are column vectors

S2 S2
: ; S = :

L so

matrix A is a diagonal matrix with

/p,
Ip in the i th row/column if the next state Si is under

Ii
0

A_

/j
and matrix G is defined as

G =

_11 .... gln

gnl gnn

in which

For example,

1 if Si is the next state of Skg;k= 0 ifSiisnot the next state of Sk

the matrix expression for the flow table in Table 2 is:

^

&l
^

^

&
^

^

_Sa2_

/i 0 0 0 0 0'_

0 I1 0 0 0 0

J

0 0150 0 0

0001300

o o o o 12 o

o o o o o 13

011111_

100000

011100

111000

100011

000111

Ssl
Ss2
Sc

Sa2 j

(9)

"_ The matrix A and G are directly related t0hardware structure. As in the ILA realiza-

tion, there will be a slice of the ILA circuit for each design equation, as shown in Figure 3.

Now each element at the diagonal of the matrix A indicates the input state to the ILA

slice. Each row of matrix G reveals the location of ILA ceils in the slice. If the element

gik is 1, then an ILA cell will be placed under the control of state Sk in the slice of the

ILA circuit for next state ,_i. If gik is equal to 0, a wire will be placed in that position. An

example of the ILA realization will be shown in next section.



2.1.8

6 Design Procedure

From the discussion in the previous section, the design of a synchronous machine can be

completely automated by programming an ILA cell or a wire into a pre-interconnected

layout floor. It allows the physical layout to be designed and stored in computer as a set

of building blocks. Then for each instance of synchronous sequential logic, an ILA circuit

can be implemented by placing ILA cells according to the corresponding G matrix. The

A matrix _ indicate the interconnecti0n to input states.

From the layout point of view, a wire can be considered as a ceil as well. Hence

there will be two cell types in an ILA realization. Let the ILA cell which performs the

multiplexer function be defined as a MUX cell. Let a wire be defined as an ILA ZERO

cell. Now vlae a MUX once
a]. is encountered[ or a: _6 ce_ onc:e- a _6 '_ _s encounterecl. _e Se_aemafic 0£ a M_X

cell and a ZERO cell are shown in  gure 4 (b) and (c)respectiveiy.

Procedure 1 Synchronous ILA network design procedure.

Step 1. For a synchronous machine specified by a state diagram, convert it into a Jyn-

chronous flow table (state table).

Step 2. I] a stage appears as a ne_t state under more titan one input column, split rite

state and give a unique name to the state under eaCit (nput column, l_epeat this step

until all states under one column are distinguished .fi'om states under other coluriiii£

Step 3. Generate the A matriz by setting the diagonal element in the i th column to be In

if stale S_ appears as a nezi _iaie in rite flow taide un&r i v.

Step 4. Generate the G rnatriz such ihat gls is "_1" i/-Si _iJ the nezt state o] Sj, gij = 0
otherwise. .....

Step 5. Map the matrices to the layout floor. Place a MUX cell under the control of Sh

in the slice of the ILA circuit for the nezt state S_ if g_k = 1 or place a ZBR 0 cell if

g_k = O. ........

Step 6. Connect Input-1 o] the last ILA cell in the slice of the ILA circuit for S_ to I v

which is the diagonal element of matriz A in the i t_ row. Cohnect Input-O of the last

ILA cell to the levelo4logic Iow (VSS). ;: ;_

For example, for a sync_us-macI/_ne SpeC{f[ed_ a flow tgble sl_own _n Tabie i, it

needs to find those states which are under more than one input state and to sprit them.
-Th=e result of splitting is shown in Table 2. The matrices of the flow table can then be

generated. For instance, S, _s a next s_a_e under/1 of state Sb_, Sb_, S_, Sd_ and Sd3. Then

/1 becomes the diagonal element aax in matrix ALthe 1"_ row ofmat_x G will h_ve a "0"

intlae first column since the next state of S, under/'1 is not So, and have a "1" in the rest

of columns. The A matrix and G matrix can then be mapped into an ILA network. The

result is shown in Figure 4 (a) where each ILA cell is represented by a box. The boxes in

dash line represent the zERO cell(gij = 0) and boxes in solid line represent the MUX cell



3rd NASA Symposium on VLSI Design 1991 2.1.9

I I

I I

I I

L

I |ero | I I i

0 O' ' ' '

I I I

I I |

I I I

I I

I I

I I

-- r-

I

I

I

L

I"

I I I

I I I

I I I

I i I I I I

! I I I I I

I I I I I l

L .... I---'-'L .... I L .... l

I I I

I I I

I I I

(a) Synchronous ILA network

I I

I I

I !

_I

/i

VSS

VSS

__ VSS

S SN

(b) ILA cell - mux

o o

L ........... J

(c) ILA cen - zero

Figure 4: The ILA network for the example



2.1.10

(gi# = 1). As the first row of matrix G is "011111", the top slice of the ILA for $,, consists

of one ZERO cell on the left and five MUX cells. Again, from matrix A, the input of the
last ILA cell is tied to I1 and VSS.

As mentioned before, a major advantage of the design approach in Procedure 1 is that

it allows a hierarchical layout design. The high level layout, including interconnections, is

identical for all synchronous flow tables. When the function of a flow table changes, the

only thing one has to do is to instruct thec0mpUter to re-program the position 0f MUX

cell and ZERO cell. Of course, the inpid state to each slice of the ]LA may need to be
changed as well.

7 Automated SynChronous ILA Design System

The ILA design procedure has been coded into computer programs and ported to Hewlett-

Packmrd FUNGEN layout tool. The automatic=synchronous ILA design system consists of

an HP FUNGEN shell and thrcemajor subsystems:

• Sequential LogicPro :ess r ....

• FUNGEN Configuration Code

• Library of Layout Building Blocks.

The Sequential Logic Pro_ess0r is an ILA circult topoiogy generator which receives the

specification of synchronous sequential machine and converts it into a form specified by

FUNGEN Configuration Code. There are three phases in implementing the _eq_entlal

Logic Processor: ]tow table revving, matrices genera-tion and RG_'RC ]o_.mh-fiOn. _ae_-rs_

two phases follows closely to the step 2, step 3 and step 4 in Procedure i. The third phase

is to generate parameters of device modules pre-defined by FUNGEN Configuration Code

and write them into a FGNRC file. By modifying the last phase, the program can be

ported to any other artwork generator systems,

The FUNGEN Configuration Code describes the :artwork architecture and defines the

modules in the FGNRC file. The FUNGEN Configuration Code is written in Fun_n

Configuration Language (FCL), a subset of C language with a number of functions for

Hewlett-Packard TRANTOR database generation. The overall ILA architecture and a set

of ILA configuration modules are specified in the FUNGEN Configuration Code.

When running the FUNGEN shell, the system invokes the FUNGEN ConBguratlon

Code, FGNRC file and Layout Library, and automatically generates a layout artwork

by placing pre-designed ILA cells and peripheral buffers, it also labels all of blocks in

accordance with the FUNGEN Configuration Cocle and FGNRC file. Figure 5 illuslrates

the block diagram of the ILA design system and the algorithm of Sequential Logic Processor
implementation.

i

L



3rd NASA Symposium on VLSI Design 1991 2.1.11

FUNGEN

Configuration

Code

Library

Bu_ding

Blocks

I SYNCHRONOUS FLOW TABLE I

NO

YES

For all States I

_1 YES
Modify Columns

I

For All States _-

I I

YES _ NO

I FGNRC data

HEWLETT-PACKARD FUNGEN

ARTWORK

Figure 5: Block diagram of the automatic ILA design system



2.1.12

8 Summary

This paper presents an ILA architecture for synchronous sequential circuits.The design

procedure is also proposed to realizesynchronous sequential ILA circuitsby programming

the placement of two basic cells,a 2 to 1 multiplexer or a cellof metal wires. The inter-

connections between iLA cellsisonly a singleroute linein both the X and Y dimension.

The simplicity and programmab_ty of the procedure significantlyreduce the effortin all

stages of synchronous sequential circuitimp_entatlon, from logic design, circuitdesign,
physical layout to verification.

The ILA design procedure utilizes matrices expression to represent design equations.

One of the advantages of using matrices is that they directly indicate the placement of the

ILA cells in the realization. An ILA design tool for synchronous sequential circuits has

been implemented into a computer system which automatically, generates layout artwork

from a synchronous sequential machine specificatiofi.

References

[1]
C. Roth, Fundamental, o] Logic Design, 3rd Ed,. St' Paul, Minn., West _ublJsh]ng,
1985.

[2] D. Givone, Xntroduction to Switching _ircuit Theory, Mc raw-I-iiu,inc., i970.

[3] S. Whitaker, "Design of Asynchronous Sequential Circuits Using Pass transistors,"
Ph.D Dissertation, University of idaho, Feb. 1988,

[4] S. K. Oopa]aicrlshnan-and-G: _ Maki, "VLSI Asynchronous Sequential C|rcuit De-

sign", ICCD, Sept, 1990, pp. 238-242.

[5] S. Whitaker and G. Maki, "Pass-Transistor Asynchronous Sequential Circuits", IEEE
JSSC, Voi.24, No.l, Feb. 1989, pp. ?i:78.

[6] W. W. Stiehi, "A Mathematical Basis for the Optima] Synthesis of Finite State Ma-

chines." Master of Science Thesis, University of Idaho, Moscow, Idaho, June, i986.

L



3rd NASA Symposium on VLSI Design 1991

N94-18341
2.2.1

Single Phase Dynamic CMOS PLA Using Charge

Sharing Technique

Y.B Dhong and C.P Tsang

The Department of Computer Science

The University of Western Australia

Nedlands, WA 6009, Australia

Abstract: This paper presents single phase dynamic CMOS NOR-NOR PLA using

triggered decoders and charge sharing techniques for high speed and low power.

By using the triggered decoder technique, the ground switches are eliminated,

thereby making this new design much faster and lower power dissipation than

conventional PLAs. By using the charge-sharlng technique in a dynamic CMOS

NOR structure, a cascading AND gate can be implemented. The proposed

PLAs are presented with a delay-tlme of 15.95 and 18.05 nsec, respectively,

which compare wlth a conventional single phase PLA with 35.5 nsec delay-time.

For a typical example of PLA llke the Slgnetics 82S100 with 16 inputs, 48 input

minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered

2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation

than the conventional PLA. These results are simulated using maximum drain

current of 600 #A, gate length of 2.0 #m, VD_ of 5 V, the capacitance of an

input mlnterm of 1500 fF_ and the capacitance of an output mlnterm of 1500

fr.

1 Introduction

CMOS technology has become a vital technology for VLSI because of its high density and

low power dissipation. However, it suffers from low speed due to its inherent parasitic

capacitance. Thus high-speed CMOS techniques have been vigorously researched. With

high speed CMOS it would be possible to implement real-time digital signal-processing

applications. As a result, an advanced CMOS technology is expected to remain at the

forefront of VLSI technology for many years to come. The problem in designing VLSI

systems is of enormous complexity. This problem can be partially simplified by using the

more general deslgn=prlncipIe of a PLA which proGdes a:regular structure: PLAs are

also attractive to the VLSI designer because thelr Structure requires a minimum number

of separate cell designs, and allows for ease in testing while offering the opportunity for

simple, rapid expandability [2].

The delay-tlme of a dynamic CMOS NOR gate increases very slowly with increasing

number of inputs [7]. By cascading two stages of multi-input NOR gates, any desired

Boolean function of the input variables can be generated. A CMOS dynamic PLA makes

use of these two properties. In CMOS technology the use of PLAs has continued, mainly

for regularity of layout and ease of code modification [6]. PLA-based nMOS processors



2.2.2

are superior in power dissipation to random-logic basedmachinesby a significant margin,
although they are slightly larger in area [1]. Dynamic CMOS PLAs are often used to
generatestate vectors for lower powermicroprocessorsrather than nMOS PLAs. However,

the use of ground switches and multiple phases reduces the speed of PLA using conventional

dynamic CMOS technology [7,8].

The fastest conventiona_ single phase dynamic CMO$ NO T-NOR-NOR-NOT PLA has

large noise spikes at the floating nodes [3,4]. Hence, a four phase dynamic CMOS NOT-

NOR-NOR-NOT PLA [8] is commonly adopted. The problem of this four phase scheme

is that complex clocks must be generated to drive the dynamic logic circuits. This also

reduces speed and requires - larger intercpnnection area. A !ow-power NAN D-NOT-NOR-

NOT PLA using a simplified addressing scheme]sproposed with 244 ns per instruction

for a signal - -" .......... _-= =-_-_.... _-= _':__:_- -_ __-_- :_.....processor m paper [4]. - =-*--_ ........ -

In (his paper, afamily of PL_ts using triggered ffeco_sand charge sharing techniques

is proposed. They are single phase dynamic CMQ$ NOT-NOR-NOR-NOT PLAs in a sum

of products (S0ff):c_I"S_YP_L__, using i-bit and 2-bit triggered decoders, respectively.

By using the charge sharing technique for the implementation of cascaded AND array in

NOR structures, and the triggered input technique for the deletion of ground switches,

these PLAs are faster and require lower power dissipation than the conventional single_

phase dynamic CMOS NO T-_rOR-NOR-NOT PLA. By using triggered 2-bit decoders on

the triggered input decoder circuits and the charge sharing technique.

the input during theprecharge time, the capacitancesof an inpu.t .re_interm of a P.LA can b.e

minimized to reduce power [5,6]. Therefore, it is possible to make a faster PLA employing

Dynamic Single Phase CMOS PLA2

CMOS PLA operations may be divided into two classes: pseudo-nMOS and dynamic

CMOS. Advantages of the pse_udo-nMOSpLAs_inc!ude _sim_p!ic!ty 5nd s_ area. Disad-

vantages are due to the static power dissipation. The dynamic CMOS PLAs gener_ate less

" power-a_nci ground_nolse-t_n-th_e pseudo:nMOS--P-LAs .-T---heepseudo--n_cIOSffL-As _are fa_er

than dynamic CMOS PLAs, but for large PLA layouts the power dissipation is e_cessive ,

thus forcing the designer to go to dynamic CMOS.

A modified schematic of a conventional single phasedynami_ CMOS_QT-NOR--ffQR-

NOT PLA [3] is shown in Figure 1. This PLA is known to be the fastest [4], but at the

expense of the cost of wasted power. The ground switches are charged and discharged

every cycle. They connect the sources of all the AND array input transistors, and for

layout compactness are built in diffusion, This results in a high capacitance of the order of

tens of picofarads._FOr larger minterms-] t_e-adai_on_cap_c_-t-knce%£ _t_eg roun_ Sw[tches

is significant. .....

2.1 Triggered Input Logic for Dynamic CMOS Logic

Dynamic CMOS circuits have higher speed and=_lower chip _re_a_ th_a_n__t__h_ec__on_v_e_n_tiq_



3rd NASA Symposium on VLSI Design 1991 2.2.3

static CMOS logic. However, it can only implement noninverting functions. This is because

every Domino CMOS gate has to be followed by an inverter and the output of any dynamic

CMOS gate cannot be fed directly to another gate. It is possible to avoid this problem by

using a triggered 1-bit decoder.

Let us assume that every dynamic triggered 1-bit signal (a, a') is reset to (0,0) during

the precharge period. A triggered 1-bit decoder signal as a two-valued "one" signal A is

represented as (1,0), and the corresponding two-valued "zero" signal A as (0,1) during

the evaluate period. For example, a two-valued static signal A can be represented as

a triggered 1-bit decoder signal (a, a') using a two-variable two-valued signal with three

states, as shown in Table 1.

Figure 2 shows a triggered 1-bit decoder for dynamic CMOS logic circuits. It consists

essentially of a general signal a and its complementary signal a _. During the precharge

time (¢ = 1), n-devices (2,6) are on to be precharged to low at the outputs (a and a'),

and p-devices (1,5) are off, so the output signals are low, and p-device (3) and n-devlce (4)

together run as an inverter. During the evaluate time (_ = 0), when n-devices (2,6) are off

and p-devices (1,5) are on, the values of drains of p-devices (1,5) can be transferred at the

outputs a and a _. Only the logic values of drains in p-devices (1,5) can be transferred to

the outputs respectively, because the outputs a and a _ are low initially during the evaluate

time (¢ = 0). In order to make the same rise time of both a complementary signal a _ and

a general signal a of any input signal, the channel width of p-devlce 3 must be designed

to be larger than that of n-device 4. This decreases the delay-tlme of input signals at the

beginning of the evaluation time.

Figure 3 shows a triggered 2-bit decoder for input signals of a dynamic CMOS PLA. A

2-bit decoder decodes a 2-bit number into 4 output signals. In our case, during precharge

time the decoder output signals are set to all "one" or all "zero" depending on the SOP or

POS types, respectively. The n-device (14) and the p-device (6) together run as AB gate.

This saves power dissipation and improves speed in dynamic CMOS PLA. This is because

the number of input nodes is reduced by half leading to reduction of the the capacitance

of input nodes. If the node N1 is high, the node N2 is low, the node N3 of the drain of

p-device (4) is low, and the node N4 of the gate of n-device (4) is low during precharge

time, then the node N1 becomes low with threshold voltage and slow speed. However,

because the node N2 is low during the precharge time, the transfer of logic "1" only occurs

through p-devices (4,5) to the node N2 with high speed during the evaluation time. During

the precharge time the n-devices (13,15,17,19) work as the ground switches in the front

array part of PLAs, because they set all input signals of the front array part to "zero". In

the case of SOP PLA (see next section), all input signals in the front array part are set to

"one" during the precharge time. In this way, these triggered decoder circuits allow the

input of static CMOS signals in a dynamic CMOS PLA.

2.2 Design of a Single Phase Dynamic CMOS SOP PLA

The schematic of a single phase dynamic CMOS NO T-NOR-NOR-NO T sum of product

(SOP) PLA using triggered 1-bit decoders is shown in Figure 4. This SOP PLA consists



2.2.4

of triggered 1-bit decoders, the AND array, buffers, and the OR array.

The triggered 1-bit decoder consists of inverters (such as 1), the p-devices loads (such

as 4,6) as the ground switches in the AND (front part) array, and functional n-device

switches (such as 3,5). The n-device (3) acts as the switch for a general signal and the

n-device (5) acts as the switch for a complementary signal.

The AND array consists of loads (such as p:device 11,12), switches (such as n-device

15,16) as the ground switches in the OR (next part) array, and functional switches (such

as n-device 19,20) with no ground switch. A conventional dynamic CMOS logic system in

two-valued logic using two-varlable two-valued logic must use ground switches to prevent

a discharge path during precharge time. However, by using triggered 1-bR decoder logic,

ground switches are not needed. Thus this reduces power dissipation and improves speed

through the omission of the ground switch. Furthermore, the triggered 1-bit decoders set

all input signals in the AND array to high and all input signals in the OR array to low

during precharge time. In this way, the triggered decoder concept is suitable for a dynamic
CMOS PLA system.

Charge sharing is usuaIIy a problem in the design of dynamic CMOS AND gates.

However, the proposed NOR gates which use charge sharing techniques are suitable for

the implementation of the AND array. This charge sharing technique in the AND array

overcomes the difficulty of cascading single phase dynamic CMOS gates without the ground

switches. All inputs are assumed stable before the evaluation time. During precharge

time, when the loads (such as 11,12) are precharged, the input load nodes (such as NI) are

charged to high, and all of minterm nodes (such as N2) in AND array are discharged to

low because all triggered 1-bit decoder signals are high. When the clock goes high for the

evaluation, all loads of input minterms are turned off and the minterm switches n-device

(such as 15,16) are turned on. Evaluation paths will exist through the AND array input

devices according to the state of the inputs. During evaluation time, the output of the AND

array will conditionally charge to high if only all inputs in the m_n_erm of the AND array

are high. This keeps all minterm lines to virtual ground except the selected ones, which

have all input transistors connected to them turned off with all existing charges remaining

shared. These AND gates work as NOT-NOR gates. Also, a minimum capacitance ratio

value of CN_/CN2 of 2:1 is required, where CN, is the capacitance of the node Yx and CN3
is the capacitance of the node N2.

The speed of the AND array depends on the minterm switches (such as 15,16), and

their maximum drain current depends on the n-device (such as 19,20) and the n:d_e-elce

(such as 15,16). Thus in the range of the maximum dra_n current (60(I/_A) we can increase

slightly more the width of the n-devlces (15,I9) to 6.5/_m, to improve speed over that of

a conventional CMOS PLA of 4/_m. Figure 5 shows the simulated waveforms of internal

nodes. If A and B are low, V4 is ¢ signal as the input trigger voltage, VI_ is the voltage of

NOR gate using charge sharing at the selected node Nz, and V13 is the pumping voltage
at the unselected node N2.

Figure 6 shows the simulated waveforms of selected internal nodes. V2 is the selected

output voltage at O _, V4 is ¢ signal as the input trigger voltage, V12 is the voltage at the

D

i

=

=

m



3rd NASA Symposium on VLSI Design 1991 2.2.5

selected AND array node N3 and its steady state voltage is the same as CN1VDD/(CN1 +

CN2), and V16 is the voltage at the selected OR array node Ns if A and B are low.

Figure 7 shows the relationship between the pumping voltage and the width ratio. This

PLA was simulated using SPICE3dl based on the channel width of the n-device 15 (Wls)

at 6.5 #m, and that of the n-device (19) (W19) at 6.5 #m. Although the channel width

ratio w increases linearly with speed, it demands the increase of the pumping voltage with

a decrease in the noise margin. Thus in order to prevent the incorrect operation resulted

from pumping phenomena (i.e., a reduction of the noise margin) at the nodes (such as

N2) during the evaluation time, and to keep the virtual ground, an optimal channel width

ratio Wls/W19 of 1:1 can be used. Therefore, to make a minimum pumping voltage, the

optimal width ratio w has "one" and in the worst case only, one input of the multi-input

AND gate is high.

Figure 8 shows a dynamic CMOS buffer using a one-way NOR gate.. The width of

the n-device (1) must be designed to be shorter (5 #m) to prevent the discharge by the

pumping voltage relative to the ground switch (15 #m). In buffers, the first NOR buffers

(such as 35,36) should be designed so that the logic threshold value of the NOR buffer is a

lower value than VDD/2. This measure improves the speed. These buffers can be used to

improve speed because the node N2 has larger capacitance due to many input variables.

The rising time of an input minterm depends predominantly on the resistance of the n-

device (15). Some delay will be incurred due to the finite pull-up time. The inverters

(43,44) are used for synchronizing the load signal with the triggered decoder signals in

input minterms. This AND array using the charge sharing technique does not require the

input tracking lines in the SOP PLA.

The OR array consists of loads (such as p-device 31,32), inverters (such as 33,34), and

functional switches (such as n-device 27,28) with no ground switch. Charge is dissipated

only in the selected output lines themselves. The power dissipation in the OR array is

minor compared to the AND array.

By using triggered 2-bit decoders on the input during the precharge time, a number

of input minterms of a PLA can be minimized to reduce power and to improve speed.

Therefore, it is possible to make a faster PLA with no ground switch. This SOP PLA is

suitable for the implementation of the dynamic CMOS PLA which has a lower number of

the AND array minterms and a greater number of the OR array minterms.

3 Simulation Results and Conclusions

To compare the performance of the single phase dynamic CMOS PLAs, each of the

PLAs described in previous sections was simulated using SPICE3dl. The simulated wave-

forms of the various single phase dynamic CMOS PEA are shown in Figure 9 and 10. The

input waveforms are V(35) and V(4), and the output waveforms of the front array are

V(26) and V(16). the output waveforms are V(3) and V(2) in Figure 9 and Figure 10,

respectively. In simulation, the drain maximum current of 600 #A in the input functional

n-device is used, the gate length is 2.0 #m, the Vro of n-device is 0.71 V, the Vro of



2.2,6

p-device is 0.80 V, the drain capacitance CD in the n-device is assumed 11.43 fF, the gate

capacitance Ca in the n-device is assumed 2.9 fF, VDD is 5 V, the node number of an input

minterm is 130 with 1.5 pF capacitances, and the node number of an output minterm is
130 with 1.5 pF capacitances.

Table 2 shows a comparison of simulation results for various single phase CMOS PLA

types, where both the input minterm and the output minterm are assumed to have the

same capacitance, the number of input minterms is m and the number of output minterms

is n. T 1 is the delay-tlme of the front array of a PLA and P/ is the normalized average

power of the front array of a PLA. Tb is the delay-time of the back array of a PLA and Pb

is the normalized average power of the back array oi" a PLA. Tt is the total delay-time of

a PLA and Pt is the total normalized average power of a PLA. The worst case total delay

time of a conventional single phase dynamic CMOS PLA is 35.5 ns. The SOP PLA using

the triggered 1-bit decoder and the 2-SOP PLA using the triggered 2-bit decoder are 2

and 2.23 times faster, respectively, than the conventional CMOS PLA.

The normalized average power can be considered as the total charges in a minter re. The

front array in the conventional PLA has the number of average selected minterms of _ + 1,
where the "1" is the input tracking line. The back array has the number of average selected

minterms of _. The "5" is the charge of a minterm an_ the "4" is the charge of a ground

switch. The proposed AND array using charge s_aring technique in the _0P PLA ilas

the number of average selected minterms of _ and _, respectively. The selected minterm

has wasted -_ normalized charge and the unselected minterm has wasted 10 normalized

charge. The charge of the front array in the 2-SOP PLA is a half charge of that in the SOP

PLA because of using the triggered 2-bit decoders. Thus the proposed PLA structures are

faster and require lower power dissipation than the conventional single phase dynamic

CMOS NOT-NOR-NOR-NOT PLA, because of the elimination of the ground switch. For

a typical example of PLA like the Signetlcs 82S-i00 with 16 inputs, 48 input minterms (m)

and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times

faster and has 2.1 times less power dissipation than the conventional PLA. Therefore, the

proposed 2-SOP PLA using the triggered 2-bit decoder is a faster dynamic CMOS PLA,

and this PLA has no input tracking h'ne.

References

[1] P. Cook, C.W. Ho, and S. Schuster. k study in the use of PLA based macros. IEEE

Journal Solid-State Circu_tj, SC-14:833-840,October 1_9_9: ......

[2] Eugene D. Fabricius. Introduction to VL,qI DeJign. McGraw-HiU in Electrical Engi-
neering:New York, 1990. - .....

[3] D. Hodges and H. Jackson. Analy_iJ and Design o[ Digital Integrated Circuits.

McGraw-Hill: Ncw York, 1983.

[4] Alfredo R. Linz. A low-powerlaLA for a Signal processor. IEBE Journal o]Solid-Stat6

Circuit_, 26(2):107-115, February 1991.

m

E



3rd NASA Symposium on VLSI Design 1991 2.2.7

[5] F.J. Pelayo, A. Prieto, A.Llorls, and J. Ortega. CMOS current-mode multivalued

PLA's. IEEE Trans. on Circuits and Systems, 38(4):434-441, April 1991.

[6] Tsutomu Sasao. On the optimal design of multiple-valued PLA's. IEEE Trans. on

Comp., 38(4):582-592, April 1989.

[7] Masakazu Shoji. CMOS Digital Circuit Technology. Computer System. Prentice Hall,

Englewood Cliffs, New Jersey, Computing Science Research Center AT&T Bell Labo-

ratories, 1988.

[8] Nell Weste and Kamran Eshraghian. Principles of CMOS VLSI Design A Systems

Perspective. The VLSI Systems Series. Addison-Wesley, Massachusetts, 1985.



2.2.8

|

i

i ÷

!
i 20

1

i 22

AND Array OR Array
; ............................................................................................ ... [ ...................................................... 1

i vDD
A B i

l'

3 J _'-+- __L

i !
; 1

! O_:A®B =A@B
| ........................................................

.... oo.. ....................................................................................... ,

Figure !: Conventional single phase (NO T-NOR)-(NO T-NO T)- (NOR-NO T) PLA

Time

preeharge
evaluate

_-bit triggered i-bit
signal decoder signal

A a a_ _ _'
, o o 1 i
0 0 1 1 0
1 1 0 0 1

Table 1: Encoding a 1-bit signal into a triggered 1-bit decoder signal using a twg-vari_bl¢

two-valued signal in a dynamic CMOS logic system

A

VDD

Figure 2: CMOS implementation of a triggered 1-bit decoder for dynamj'c CMOS logic

circuits

z
i

=

i



3rd NASA Symposium on VLSI Design 1091 2.2.9

Figure 3: Static CMOS implementation of a triggered 2-bit decoder

VDD ,

11

#
12

............... ......
A B

l L

..A _.1.

m-ul_r--_

_L.
[ANDArra: =

be, fferJ : •

38 4)

±

[OR Array]

Figure 4: Single phase dynamic CMOS (NOT-NOR).(NOT-NOT)-(NOR-NOT) PLA in a

sum of products (SOP) using triggered 1-bit decoders

Conventional 17.75 (_ + 1)5 + (m q- 1)4.3 17: -- 5 + 4.3n :; 35.5 6.8m + 6.8n + 9.3
,_ zo 7. '_ .5 II 8.0[ 6.7m Jr 2.5n

SOP 10.55 __10 Jr _- • _ T 11
m 5 7. '_ • 5 5.91 3.3m Jr 2.5n2-SOP 8.4,_ "i-5 Jr _" • _ _ ..

Table 2: Comparison of simulation results for various single phase CMOS PLA types



2.2.10

-- v(13) - v(4)
v(12)

8 -"-'--i"" ....... r':.T....... -,..T.-_.... --,,_
i ! lil I! I"

/ ! 1.1 I I!
4 ............ I"T"', ............ : ................ 1 ............ 1"i

! I
• I --!1 i I:

..... - ..... 1"....

il I !
•r .!.- .L i

2 ! I "i

I i i i
6Q O

1

-! ....................... +", ..... :+'-+,,-.............. .,...,......_

0.0 0.1 0.2

uS tim+e . ,

F 5=Jgure : " : 'Simulated waveforms Ot igternaJ nodes !

"" v(2_ -- v(4)
.... v(16) -- v(12)

6 ; .......... _...... ++++_"._-'_ ....... +.... ''""-'" _;;'"" ;; +''"- ......
; : + I : : ....
+ , • ; ! .

;' :l : : !, + +I: _ +
., ' +' + " +, : :+ + +

4 +..... ,+-t .........:.-.:.......+.........+...........+..I+...I..++
• ; + _ .1: ,:.: ! l _' i •
_P-II i ij td ,
: I _ " • , • t3 }"l_.... i"..l ........ "-; ..... _i .......... ,r:..!_....,...;
;11 , ",, ; :' + _ il +::1: ,:, ,J+ + +I_ ,,

I I I : _ ": ',k " :Z C : ' I;_ ! '

2 ,,V,.., ,_......./_.,--." ..........÷_.,.,I
; | ' ;I I:., n: : • I_._, I +T: ,I , :7 1.;:" ,_ .: : :I i :
; '.t i :. I _ ,- :. ; I!| ' -:
: ,:t , :l I i- +_ _ ! '_ , ;

1 H;t,-,..¢ ..... _'"_-.',+-i ......... i.......... .'..T'.-t.._..i
•.,iX, :' / ii" ,':: i i ',!_, :,

40 50 60 70 80 90 1O0

nS time

Figure 6: Simulated wavefo_ns of _intern...a! selected nodes in a single phase dynamic CMOS
SOP PLA using the triggered l-bit decoder

|



3rd NASA Symposium on VLSI Design 1991 2.2.11

! i I I

Figure 7: Simulated pumping voltage versus channel width ratio w = Wp/W,_

FDD

Figure 8: Dynamic CMOS buffer using an one-way NOR gate



2,2,!2 "" v(26) -- v(35)
v(3)

6 .'"'"'_'-'"-'_'"'"'", ........ -='-'-.,,.:...... ,..-,-..-.._
•. ; : : ! ! : :
: • ,, , , , : :

; t ; . , , . .
• . . . ¢ : v5 _ ........ {.... _ .... -" "- _'_- "-"" ---"_

: ° t " ' " _ • : :

i= ', i_ i' _ :': i _ 7
:l ," .! : :, . (..' !
t I ' . • • I ' "

, , _, • ,, , [. •"'I.... _,'3....... :.f ....... :........ _ ........ _....... r.:........
, : :, ;

i | , -. ,i '1 =
: t:
: I t_.

3 T': ..... t_"

I :i
! i:

2 _-t...... _-"

i I
.....i*..............._-'""...._.....

i
9

,

I | il 'i : :• : ,. ;

I!7: ...._......._!........!......"" ........""i ' ........"

O: ' : ___i ' ._ / _

80 9.0_ 1oo _1o 120 !30 _40 _=0
nS._ _timo

Figure 9: Simulated waveform_ of a conventionM _ingle phase dynamic CMOS PLA Vs_ is

the triggered voltage of $, Vs is the output voltage t_t the node 0', _nd V_ is tl_e output

voltage of the AND array _t the gate of p-device (14)

"" v(26) --- v(35)
v(3) ................

; ; : ; ; : :
.: ", ....... i.... • .... _,-- _'."--._.:-_

I.[....;t... /t ..... t': ...... :'t_ ..... ' .......... "_''_ ..... t","', .......... "
4

: t:
3 ;'! ..... _*"

:1 ,:
i : t."

i_ ',i
2 .;....... _."

!1

_1 ' } "

•i*'"i,," .......t_...............
I.

: t I !! _i
! , I. , !! ': " ; ' : '

1 : ........ "i........ :_.,,, .... _ ...... v.':" ........ t,,..J .... .',,,,,,,,¢

i t _', _' i :z i I ! !
:1 :,I :1 , , : :/ : :

0 _ ' " '__:l ". q :_ _ _ ;
80 90 100 110 120 !30 140 !50

n$ timo

Figure !0: Simulated waveform$ of _ single phase dynamic CMOS SOP PLA using the

triggered 2-bit decoder. All voltage numbers are the sa_e _s SOP PLA using the triggered
!-bit decoder,

=

i

:=

z



3rd NASA Symposium on VLSI Design 1991

N94-18342
2.3.1

An SEU Immune Logic Family

J. Canaris

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - A new logic family, which is immune to single event upsets, is de-

scribed. Members of the logic family are capable of recovery, regardless of

the shape of the upsetting event. Glitch propagation from an upset node is

also blocked. Logic diagrams for an Inverter, Nor, Nand and Complex Gates

are provided. The logic family can be implemented in a standard, commercial

CMOS process with no additional masks. DC, transient, static power, upset

recovery and layout characteristics of the new family, based on a commercial

1pro CMOS N-Well process, are described.

1 Introduction

Historically, the emphasis on Single Event Upset (SEU) research has been devoted to

memory circuits [1]-[16]. Memory circuits perform vital functions in any digital system,

as program stores, temporary registers and as elements of state machines which control

digital circuits, An SEU, or soft error, cause({ ]_;_aciaargedparticle striking a diffusion

region in a memory element can prove catastrophic tO an electro-mechanical system which

relies upon that memory element for communication or control. Great effort has been made

to find memory structures which are immune to SEUs, or at least mitigate the effects of

an upsetting event. The design of SEU immune memories, whether RAM or Flip-Flops,

has tended to ignore system level problems, such as an SEU of a combinational logic gate

which is sampled by a memory circuit, or an upset of a control signal such as a clock

line or mu.x select. It has been shown [17,18] that transients propagated out of or into

memory elements is indeed a real problem. Research, to find general logic gate structures

which are SEU immune, has been primarily limited to resistive or capacitive hardening,

which are basically low pass filtering approaches [17,19,20]. Kang and Chu [21] present

a logic/circuit design approach but the CMOS inverter buffers are susceptible to particle

hits on the p-type diffusion. The pre-charged output node is susceptible to a particle strike

on the n-type diffusion if the pulldown chain does not evaluate low. More recently [16]

and [22] have presented memory cells based on logic/circuit design techniques. Only [22]

addresses the issue of glitch propagation.

This paper presents a complete logic family which is SEU immune. Members of the

family are constructed, using logic/circuit design techniques, to recover from an SEU,

regardless of the shape of the upsetting event. It is also shown that the logic family can

prevent glitch propagation from an upset node. The logic family can be implemented in

a standard, commercial CMOS process without any additional processing steps. The DC,



2.3.2

transient, static power, upset recovery and layout characteristics of the new family, based

on a commercial lpra CMOS N-Well process, are presented in this paper.

Section 2 provides circuit configurations of members of the logic family, including an

Inverter, 2-input Nand, 2-input Nor, 3-input OrNand and a 3-input Ar_dNor. In addition,

a description of the SEU recovery mechanism is presented and a means for extending

this mechanism to logic structures in general is prOvided. DC characteristics of the SEU

immune inverter are described in SeXtOn 3. Noise margins, gain characteristics andthe

effects of device ratioing and threshold voltages are discussed. Section 4 provides simulation

results which show that the SEU recovery mechanism is independent of the duration or

shape of the upsetting event.-Blbc_n_ o-_ propagation is also pres_n-tetll _-sect-ion

5 presents circuit switching speed results based on p_r-delay simulations. The effects

of device ratioing on switching speed are also _ _:_ _ ...... " " ................ discussed. Static power conslderat!ons are

presented in Section 6 and physical Iayout-issues-are-pre_en_-din--Secti0n 7. Section 8
provides a summary and conclusions. .................. _...........................

2 An SEU Immune Logic Family

The literature related to SEU immune combinational logic is sparse and has- pro_ided few

clues as to what would be necessary to design a logic family which provides immunity to

single event upsets. Whitaker has, however, provided a concise summary of fundamental

concepts which can be used in the design of SEU immune memory C_rc-tfit_s_[9.2]_=°_Firs;_

information must be stored in two different places. This pr0vldesa redundancy and main_

rains a source of uncorrupted data after an SEU. Second, feedback from the noncorrupted

location of stored data must cause the lost data to recover after a particle strike. Finally,

current induced by a particle hit flows from the n-type diffusion to the p-type diffusion.

If a single type of transistor is use tfftg-create a mem_y celt then-p-transistors storing a 1

cannot be upset and n-transistors storing a 0 cannot be upset. An understanding of t-hese

three concepts and close examination of the memory circuit presented i_ [22] has provided

the key to the design of an SEU immune logic family.

Figure 1 is a trax_sistor level logic _agram 0f-_U-SEU immune inverter. The inverter

consists of two transistor networks, a p-channe! network and an n-channel network. All

devices are enhancement mode _s]t_0rs. The inverter is_a two input/two-output_logic

device with Pi, driving only p-channel devices and Ni, driving only n-channel devices.

Node P_t can provide a source of i's which cannot be upset and node Nout provides a

source of O's which cannot be upset. Transistor M2 is sized to be weak C0mpared to iVli

and transistor M3 is sized to be weak compared to M4. The SEU recovery mechanism

works as follows. When the inputs to the inverter are 0, P_t and No_t arc at a 1. In

this state only N_t can be corruptecIby an upset. If N_t is hit, driving thenodeto a 0,

transistor M2 will turn on but cannot overdrive M1. P_t will remain at a 1, transistor M3

will remain on, pulling No_t back up to a 1. Conversely_f Pin and Ni, are 1, Pout and N_t

will be at 0 and only Po_t can be upset. If Pout is hit, driving the node to a i, transistor

M3 will turn on but being weak compared to M4, N_t will remain pulled down to a 0.

r

m_



3rd NASA Symposium on VLSI Design 1991 2.3.3

VDD

_ ..--..r_ p OUT

|. ,,--+I--',,,ou.+

VS$

Figure 1: SEU Immune inverter.

The inverter follows the fundamental principles for SEU immunity and is therefore made

SEU immune.

It is readily apparent that the inverter design concepts can be applied to any logic gate

to provide SEU immunity. Figures 2,3,4 and 5 are the transistor level logic diagrams of a

two-input NAND, two-input NOR, three-input OrNand and three-input AndNor respec-

tively. In general, an SEU immune logic gate, implemented with this technique, requires

2n + 2 transistors, n being the number of gate inputs. In comparison, classical CMOS

requires 2n transistors to implement a gate.

The logic family described here can provide transient suppression of an upset event as

well as recovery from the upset. Networks of logic gates are connected such that P_t only

drives p-channel devices and No_t only drives n-channel devices. If P_t is upset, driving the

node to a 1, the p-transistor being driven will be turned off momentarily without affecting

the output of the following stage. If No_t is upset, driving the node to a 0, the n-transistor

being driven will be turned off momentarily without affecting the output of the following

stage.

The above description obviously overlooks some of the circuit design issues which would

be faced by someone wishing to design with this logic family. The family, although imple-

mented in a CMOS process is ratioed logic, with a ratioing occurring between transistors

M1 and M2 and between transistors M3 and M4. This logic family, therefore, bears a closer

resemblance to NMOS than it does to CMOS. Additionally, threshold voltages become a

design issue because of the enhancement mode transistors being used to pull up No,,t and

to pull down P_t. Design implementation issues related to ratioing and threshold voltages

are presented in the following sections.

3 Inverter DC Characteristics

The DC transfer function, v_t of an inverter provides several useful pieces of informa---_-,
tion about a logic family. Noise margin, inverter gain and inverter switch points are all

characteristics which can be determined from a plot of Vouf versus Vi_.. A DC transfer

function plot can also show if hysteresis is present. The SPICE [23] circuit simulator was



2.3.4

NAME

WCLVHT

WCHVHT

WCLVLT

WCHVLT

PARAMETER SET VOLTAGE RANGE TEMP.

SLOW N SLOW P 4.1V 140°C

SLOW N SLOW P

SLOW N SLOW P

SLOWN SLOW P

BCLVHT FAST N FAST P

BCHVHT FAST N FAST P

BCLVLT

BCHVLT

FAST N FAST P

FAST N FAST P

5.5V

4.1V

5.5V

140°C

-55°C

-55oc

4.1V !40°C

5.5V 140°C

4.1V

5.5V

-55°C

-55°C

FNSPLVHT FAST N SLOW P 4.1V 140°C

FNSPHVHT FAST N SLOW P 5.5V 140°C

FNSPLVLT FAST N SLOW P 4.1V -55°C

FNSPHVLT FAST N SLOW P 5.5V -55oC

SNFPLVHT SLOW N FAST P 4.1V !40oc

SNFPHVHT SLOW N FAST P 5.5V 140oC

SNFPLVLT SLOW N FAST P 4.1V -55oc

SNFPHVLT SLOW N FAST P 5.5V -55oc

Table 1: DC Transfer Function Simulation Cases

used to generate-DC transfer functiQns for the SEU immune inverter described in Section

2. Results of these simulations will be presented here.

In a classical family of logic, such asNMOS, PMOS or CMOS a transistor fl is defined

to be the product of the process gain factor, K', and the transistor aspect ratio, _. That
is _TRAN t W- K (-_). The inverter/3 is defined as the ratio of the pulIup/_andthe puild_n

B, or J3INV = _. The logic family descried in Section 2 is -a ratioed logic family. -In
PPD

this case the ratioing occurs between the same type devices, and the K' term cancels in

BTRAN. Therefore, flTSAN = w-Z-" In this case it is more useful to define transistors as

strong (M1,M4) and weak (M2,M3), instead of the traditional pu!lup and p u_d0wn. To

complicate matters further, _;NV now has two components, fin and _p which are not

necessarily equai. For the simulations presented here, _INV = fin = _P -- _$TRONO
-- _WBAK "

As weak is a relative term and it was unknown what effect r_tioing would have on

DC characteristics, simulations were run over-16 process parameter/voltage/temperature

, s Table 1 lists the 16 simulation cases. Itcases on 15 values of flINV ranging from g to i" -_
.- _ _ _ -- _ - , - -2/r:- _:_

was necessary to run these 16 cases in order to deternnne what effect processing variations

would have on the SEU immune inverter. The temperature and voltage ranges cover those

required by military specificati0nsof{ntegrated circuits. ......................

Once the DC simulations where performed, an inverter gain and noise margin analysis

was undertaken. It is known that ratioed logic, particularly when threshold voltage effects

are involved, has lower noise margins than non-ratioed CMOS logic. Ratioing wKl also

effect the gain of a logic gate. If the gain is too low a signal will die out after only a few

logic stages. In the case of the SEU immune inverter, under the WCLVLT case, gains of 1 or

g

m

Z



3rd NASA Symposium on VLSI Design 1991 2.3.5

NOISE MARGIN LOW

L BCHVHTLOW 0.20V fl:NV =
, FNSPHVLTHIGH 0.74V fl:NV=_

NOISE

LOW 0.30V

HIGH 1.07V

MARGIN HIGH

1 SNFPLVI-ITflmv =
, WCLVLTfray =

INVERTER GAIN VARIATIONS

LOW 1.6

HIGH 11.3

Table 2: Noise margin and inverter gain variations

1 and 1 Additionally negative noise margins were attainedless were attained for fl:gV of _ 7"

for 3:Nv of i 1 and 1 These 38 are of course unusable in a design. Both noise margin low

(immunity from positive spikes) and noise margin high (immunity from negative spikes)

were analyzed for Pout and No_t. Table 2 provides a summary of this analysis.

The inverter DC simulations eliminated 5 3:NV from further consideration and showed

that several more could prove marginal in a design. With the DC analysis complete, the

SEU recovery ability of the inverter could be investigated. The results of this investigation

are presented Section 4.

4 SEU Recovery Results

To verify the SEU recovery ability and the transient suppression characteristics of the SEU

immune inverter, described in Section 2, SPICE simulations were run over the same 16

cases described in Section 3. Both P_t and N_t were tested. Since inverters with fl:Nv <
1 8

where rejected during D C analysis only 10 3:N¢, ranging from g to i, were simulated at this

stage. The SEU immunity of the logic family was shown to be independent of processing

parameters, temperature or supply voltage. The error recovery mechanism is provided by

the logical feedback of transistors M2 and M3 and the r atAging of transistor strengths. The

recovery mechanism is also not dependent upon the wave shape of the current pulse which

upsets the node.

The simulation circuit used to test the recovery mechanism consisted of a chain of 3

identical inverters. No parasitic capacitance other than self-capacitance and that seen at

the inputs to the next stage was added to the circuit. The inputs to the first inverter

were set up to the proper initial conditions. A voltage controlled current source was

connected to the node to be upset. This provided a means to inject charge into the node

without attaching any parasitic capacitance. Additionally an ideal diode, emulating the

parameter dependent source/drain to substrate/weU diodes, was attached to the node.

This diode did not create any additional capacitance. A current pulse, with a duration of

10ns, and a magnitude sufficient to forward bias the source/drain diode, was applied to

the node. The 10ns pulse width was chosen because it was longer than the propagation



2.3.6

delay through the inverter as well as being longer than a real SEU. Recovery from an SEU

was shown to be independent of parameter/voltage/temperature cases. Although all/31NV

cases recovered, SEU recovery time was dependent upon fl1Nv. Faster recovery times were
1

noted for _31Nv > _. ___ _

Besides being able to recover_m =ah- upset event an SEU immune logic family must

be able to suppress the propagation of transients out of the upset node. Due to the P-net
r

driving P-net and N-net dfi_n_n_gN----n--et configuration describe_i in Section 2, the logic family

presented in this paper should be able to suppress glitches caused by an SEU. SPICE

simulations verified that this is the case. The simulation circuit used to test transient

suppression was the same as that used for testing upset recovery. In this case, however,

a lrts current pulse was applied to the upset node. This pulse duration is closer to what o

one would expect from a real SEU. Transient suppression was measured at the output of

the inverter being driven by the upset node. If the magnitude of the glitch on this output

was within the noise margin, for the parameter/voltage/temperature case and fl1Nv being
simulated, the transient was considered suppressed. Results of these simulations indicated

that transient suppression was depende_6n simulatlonc-ases:v.s_-as i_INv, in fact, i
i rejected as _ ........any flINV < i was unusable, in a design, due to poor transient suppression

abilities.

....... _ _ _ _ _i'remainingai't _ the SEU r .... _The sevenratios with flxNv > e ecovery/transient suppression t--

simulations were subjected to a transient analysis to determine switching speeds of the SEU

immune logic family. These results are presented in Section 5.

5 Transient Analysis of the SEU Immune Inverter

With a modern CMOS process it is possible to attain inverter gate delays of lns or less. For

an SEU immune logic family to be of interest to ithe VLsI design community the inverter

described in Section 2 should have a gate delay M least in the ns range. Transient analysis

simulations show that this is possible. SPICE slmulahons were run over the same 16 cases

described in Sections 3 and 4. The simulation circuit was a chain of 7 identical inverters.

Each inverter was loaded with a 1000pF linear capacitor. This large capacitor swamped

out any voltage dependent capacitors associated with transistor source/drain regions as

well as gate capacitances seen by the inverter outputs. The first inverter in the chain was

excited by a step function, and pair delay information was extracted from the output. A

pair delay is defined to be the delay, measured from mid-point to mid-point of the voltage

swing, through a pair of inverters. This delay contains both a time delay n'se and g tj_m_e

delay fall. In non-ratioed logic, such as Classical CMOS, inverters are designed to have

equal rise and fall times. In a rat_oecI Iogic family it is not always possible to design for

equal rise and fall times, therefore pair delay information is more useful. In this case 4

pair delay values were computed, delay from a rising edge and from a falling edge, for

both Pout and IW_t_ The-longest delay of these-was chosen as the worst case delay. At

the outset it was unknown which parameter/voltage/temperature case would prove to- be

that of worst case speed. In classical CMOS it would be WCLVHT. For this logic family



3rd NASA Symposium on VLSI Design 1991 2.3.7

Pairdelay Chart (Cload = 1000pF, Delay = ps)

FeedBack Transistor Width (L : 1.0prn)

_XNV 2.4pm 4.8pm
143 54

"--'-_-- 107 41
1

90 35
82 32
75 29

70 27
1

66 25

7.2t_rrt 9.6tzm
34 25
26 19

22 16
20 15
18 13

17 12
16 12

21.6pm12.0pm 14.4_m 16.8_m 19.2_m
19 16 14 12 II 9
15 12 I0 9 8 8

13 11 9 8 7 6
12 9 8 7 7 6

II 9 8 7 6 5

10 8 7 6 5 5

9 8 7 6 5 5

t 24.0prn

Table 3: Pair delay results.

it also proved to be WCLVHT. Simulations were run on all of the surviving _,NVS, with

ten different transistor widths, ranging from 2.4#m to 24.0pra. Pair delay charts for each

_tNV were constructed. A table of pair delay versus transistor width is provided in Table

3. As expected, because delay is inversely proportional to width, pair delays decrease as a

function of transistor width. Speed, another useful design measure, is the linear function,
1

delay"
From the results of the SEU recovery ability, described in Section 4, and the pair

delay information in this section, it would seem that _,NV = oo would be the best choice.

However, as in all engineering endeavors there is a practical limit to the choice of _ZNV.

Both power dissipation and physical layout constraints must be considered. Section 6 and

Section 7 will discuss these issues, as they relate to the SEU immune inverter.

6 Static Power

In Section 2 it was stated that the SEU logic family presented in this paper was, in some

regards, more closely related to NMOS than CMOS. Due to the ratioing between the

normal transistors and the feedback transistors, and the effects of threshold voltages, this

logic family dissipates static power. SPICE simulations were run, with the same cases

described in previous sections, to characterize this power dissipation, and the effects of

flINV on it. As expected, power dissipation increased with _tNV. The power dissipation

was worst under BCHVLT conditions for both input high and input low conditions. Static

power consumption may place a limit on the number of SEU immune gates which can be

placed on an integrated circuit.

7 Physical Layout

The SEU immune logic family presented in this paper can be implemented in a standard

CMOS process, using standard layout design rules. The family does, however, have charac-

teristics which makes physical layout of the family different than a classical CMOS layout.

A classical inverter, for example, requires a minimum of two lines, the input and the out-

put, crossing the well boundary. The SEU immune inverter has two separate inputs, P_n



2.3.8

and N_t, but they need not cross the well boundary. However, there are two feedback lines

which must cross. Additionally, both VDD and VSS are required for both n-transistors

and p-transistors, whereas a classical inverter only requires one power supply for each

transistor type. The signal connections are more complicated in the SEU immune logic

family than in classical CMOS. In addition, the SEU immune logic family has two more

transistors than does classical CMOS. One should, therefore, expect tha{Iayout densities

would be less for the SEU immune logic family. As designers acquire more experience with

layout considerations the attained densities should improve.
attained.

8 Summary and Conclusions

This paper presented a complete logic family whlch is sEu immune. Members of the

family are constructed, using iogic/circuit design techniques, to recover from an SEU,

regardless of the shape of the upsetting event. It was also Shown: t_t the logic family can

prevent glitch propagation from an Upset node. T-he iog_c fam_iy c_be impiem-ented_in

a standard, commercial CMOS process without any additional processing steps. The DC,

transient, static power, upset recovery and layout characteristics of the new family, based

on a commercial l_rn CMOS N-Well process, were presented.

This logic family makes the design Of compietely_ immuneintegra;ed circuits pos-

sible. The simulation results presented in this paper should prove useful to designe_rs who
need to implement SEU immune systems. .......

A test chip, which will be used to verify the simulations presented here, is currently
being defined.

Acknowledgement

The work reported here was supported in part by NASA under Space Enginee_ngl_esearch

(3enter grant NAGW-1406. The author would also like to thank Sterling W'hitaker, Don

Thelen and Kelly Cameron, of the NASA SERC for VLSI System Design, for helping me

understand the principles of ratioed logic desigri. ................. _............

References

[1] D. Binder, E. Smith and A. Hoiman, "SateUite Anomalies from Galactic Cosmic Ray",

IBEE Transactions on Nuclear Science, Vol. NS-22, N02 6, Dec. i975, pP.:2675-2680,

[2] j. Pickel and 3. Blanford, "Cosmic Ray Induced Errors in MOS Memory Cells", IBEF,

Transactions on Nuclear Science, Vol. NS-25, No. 6, Dec. 1978, pp. I166-ii7-i.' '

[3] W. Kolasinski, J. Blake, 3. Anthony, W. Price and E. Smith, "Simulation of Cosmic

Ray Induced Soft Errors and Latchup in Integrated Circuit Computer Memories",

z

=

i



3rd NASA Symposium on VLSI Design 1991 2.3.9

[41

[5]

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 6, Dec. 1979, pp. 5087-5091.

J. Pickel and J. Blanford, "CMOS RAM Cosmic Ray Induced Error Rate Analysis",

IEEE Transactions on Nuclear Science, Vol. NS-28, No. 6, Dec. 1981, pp. 3962-3967.

E. Petersen, P. Shapiro, J. Adams and E. Burk, "Calculation of Cosmic Ray Induced

Soft Upsets and Scaling in VLSI Devices", IEEE Transactions on Nuclear Science,

Vol. NS-29, No. 6, Dec. 1982, pp. 2055-2063.

[6] J. Pickel, "Effect of CMOS Miniaturization on Cosmic Ray Induced Error Rate",

IEEE Transactions on Nuclear Science, Vol. NS-29, No. 6, Dec. 1982, pp. 2049-2054.

[7] S. DieM, A. Ochoa, P. Dressendorfer, R. Koga and W. Kolasinsld, "Error Analysis

and Prevention of Cosmic Ion Induced Soft Errors in Static CMOS RAMs", IEEE

Transactions on Nuclear Science, Vol. NS-29, No. 6, Dec. 1982, pp. 2032-2039.

Is]

[9]

[10]

[11]

J. Abraham, E. Davidson and J. Patel, "Memory System Design for Tolerating Single

Event Upsets", IEEE Transactions on Nuclear Science, Vol. NS-30, No. 6, Dec. 1983,

pp. 4339-4344.

S. Cunningham, "Cosmic rays, Single Event Upsets and Things that Go Bump in the

Night", Advances in Astronautical Sciences, Vol. 57, 1984.

J. Browning, R. Koga and W. Kolasinski, "Single Event Upset Rate Estimates for a

16K CMOS SRAM", IEEE Transactions on Nuclear Science, Vol. NS-32, No. 6, Dec.

1985, pp. 4133-4139.

S. Cunningham, "Living with Things that Go Bump in the Night", Advances in

Astronautical Sciences, Vol. 56, 1985.

[12] R. Johnson and S. DieM, "An Improved Single Event Upset Resistive Hardening

Technique for CMOS Static RAMs", IEEE Transactions on Nuclear Science, Vol.

NS-33, No. 6, Dec. 1986, pp. 1727-1733.

[13] A. Ochoa, C. Axness H. Weaver and J. Fu, "A Proposed New Structure for SEU

Immunity in SRAM Employing Drain Resistance", IEEE Electron Device Letters Vol.

EDL-8, No. 11, Nov. 1987, pp. 537-539.

[14]

[15]

[16]

H. Weaver, C. Axness J. McBrayer, J. Fu, A. Ochoa and R. Koga, "An SEU Tolerant

Memory Cell Derived from Fundamental Studies of SEU Mechanism in SRAM", IEEE

Transactions on Nuclear Science, Vol. NS-34, No. 6, Dec. 1987, pp. 1281-1286.

J. Rollins and J. Choma, "Single Event Upset in SOS Integrated Circuits", IEEE

Transactions on Nuclear Science, Vol. NS-34, No. 6, Dec. 1987, pp. 1713-1717.

L. Rockett, "An SEU Hardened CMOS Data Latch Design", IEEE Transactions on

Nuclear Science, Vol. 35, No. 6, pp. 1682-1687, Dec., 1988.



2.3.10

[17] S. E. Die_ _an_d J, E. Vinson, "Considerations For Single Event Immune VLSI Logic",

IEEE Transactions on Nuclear Science, Vol. NS-30, pp. 4501-4507, Dec., 1983.

[18] J. F. Leavy, L. F. Hoffmann, R. W. Shovan and M. T. Johnson, "Upset Due to a Single

Particle Caused Propagated Transient in a Bulk CMOS Microprocessor", Proceedings

of the Nuclear and Space Radiation Effects Conference, July, 1991.

[19] Y. Savaria, .L Hayes, N. Rumin _ndV: Agarwal, "A Theory for the Design of Soft-

Error-Tolerant VLSI Circuits", IEEE Journal on Selected Areas in Communications,
Vol. SAC-4, No. 1, pp. 15-23, Jan., 1986.

[20] Y. Savaria, N. Rumin, J. Hayes and V. Agarwal, "Soft Error Filtering: A Solution to

the Reliability Problem for Future VLSI Digital Circuits", Proceedings of the IEEE,
Vol. 24, No. 5, pp. 669-683, May, i986.

[21] S. Kang and D. Chu, "CMOS Circuit Design for Prevention of Single Event Upset",

Department of Electrical and Corn-purer Engineering, University of_nols at Urbana-"

Champaign, 1986.

[22] S. Whitaker, J. Canaris and K. Liu, "SEU Hardened Memory Cens for a CCSDS Reed

Solomon Encoder", Vrocee_ngJo] the NUhieCr and Space _adiation :Effects=Confer .
ence, July, 1991.

[23] W. Nagel, "SPICE2: a Computer Program to Simulate Semiconductor Circuits",

ERL-M5$O, Electronics Research Lab, University of California, Berkeley, May 1975.

VDI_,'DD

i_ Pout

Figure 2: SEU Immune two-input NAND.

m

i



3rd NASA Symposium on VLSI Design 1991 2.3.11

VDD

P_--_
Pout

Noul

VSSVSS

Figure 3: SEU Immune two-input NOR.

VDD

VDD

PB---_E _-- PO
Pout

Nout

N_C"_ _ NB

VSSVSS

Figure 4: SEU Immune three-input OrNand.

VDI]VDD

PC--__ Po.t

I voDg 

Figure 5: SEU Immune three-input AndNor



LZ

?

=

=

Z

m

Z



3rd NASA Symposium on VLSI Design 1991

N94-13343
2.4.1

Cellular Logic Array for
Computation of Squares 1

M. Shamanna, S. Whitaker and J. Canaris

NASA Space Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract- A cellular logic array is described for squaring binary numbers. This

array offers a significant increase in speed, with a relatively small hardware

overhead. This improvement is a result of novel implementation of the formula

(z + y)2 = z2 T y2 + 2xy. These results can also be incorporated in the existing

arrays achieving considerable hardware reduction.

1 Introduction

The advent of VLSI has spurred a renewed interest in the development of specialized

arithmetic circuits. Special arithmetic functions like squares and square-roots are generally

implemented in software. However, when a machine is designed for a specific application,

wherein squaring is a frequent process, it may prove advantageous in terms of speed to use a

hardware implementation. Most of the approaches, reported in literature for squaring and

square-rooting, use array multipliers or special purpose arrays which perform a multitude

of other operations in addition to squaring. As a result, there are very few arrays which are

solely devoted to extraction of squares. However, Dean[l] has reported such a dedicated

array which is probably among one of the fastest squaring circuits known, thus far. In

addition, Dean's array uses considerably less hardware than other arrays reported so far.

Hence Dean's array has been selected as the obvious choice for comparison with the array

proposed in this paper. The proposed array, will provide a significant gain in speed, with

a very small hardware overhead, as compared to Dean's squarer[I].

2 Algorithm

Dean[l] has not presented a formal algorithm for his implementation. So, the widely

used general binary squaring algorithm[3] will be presented first followed by the proposed

algorithm for purposes of clarity and easy understanding. The existing algorithm for binary

squaring is generally formulated as follows:

(1) 2 = (01)b

(a11)2= (al)2 + (0a101) or

1This research was supported ( or partially supported ) by NASA under Space Engineering Research
Center Grant NAGW-1406.



2.4.2

F2 = F1 + (OalO1)b

where F1 = (O1)b if a, = 1 and Fx -- (O0)b otherwise. Similarly, we have

(a,.,1), = (a2.,)2 + (00.,.,01),, or
: . : ±

F3= F2+ (00a_al01)b
In general if a,.+l= 1 then, ........

F,+_= F,+ D,

rtime#

where Fr:(ara,._l... a2a,) 2 is the rth square and D, = 00 .... 0 a,.a,_a ..a, O1 is called

the r ta radicand. It is obvious that F,+a = F, if q,+! = 0. The above iterative formula

applies for_ all r = 1, 2,...,n. Figures 4 and 5 show the schematic details of a three bit
squaring array iror the above ....._ ......... ...... _: = - [_ " -

The proposed algorithm makes _se 0fthe well known formula (z + y)2 = z2 + y2 + 2z//.

Consider a three bit number (a222 + a,2 * + a02°). The LgB-1 and LgB of the squ_ar.¢ of

any number_ will respectively be 0 and LSB of the originM numi)er hse_: Therefore,

The same result can also be achieved by the repeated application of the formula (z +

y)2 = z2 + y2 + 2zy where y is the LSB and z is the rest of the binary number.

Also,

y

= (_2,) _+ 2(a_a,2_)+ _Z
x 2 2zy y2

-- (a_)2 2 -t- (aza,)2 2 + a,2 "'::::_ .......

= (_2+ _3_')2_+ _,2° 0)

(a222 + a12' + a0_ 2 = (a222 + a121) 2 + 2(a2a022 + a,ao2 i) + ao26- -

Y x 2 2zy y2

= (a22_ + a12°)_22 + (a_a02 _ -4- a,aog. 2) + ao2 ° (2)

Equation 1 proves that the LSB-! bit and the LSB of the final answer is always 0

and the LSB of the original number itself respectively. Since multiplication by 2 implies

a left-shift by one bit position the term (2a2al) has been shifted from the 21 bit position

to 25 bit position in Equation 1. This result for a three bit binary number is realized by

the array of Figure I. The alg_ithm can easily be extended to any n bit number. The
nove!ness of the algorRhm:[ieS[n-=tI_e i_ct that squarifigoi r the number_is carr_iedout _n

steps coupled with the ingenious use of left-shifts in the bit pos_ition_.

R

m

=

=



3rd NASA Symposium on VLSI Design 1991 2.4.3

3 Comparison

The implementation of the proposed algorithm for a 3 bit and a 4 bit number has been

illustrated in Figures 1 and 3 respectively. The proposed array is built of the basic half-

adder cell shown in Figure 2. Its function may be defined as follows:

u = (w + v-l) • (_V)

v = (w + v_l). (_v)

The symbols + and • stands for the Inclusive-Or and And operations in the above expres-

sions.

The implementation of 3 bit squarer based on Dean's algorithm is also illustrated in

the Figures 6 and 7. The basic cell (Figure 7) has two control inputs A and B. The inputs

on the lines C and D are added in the cell, S being the sum out and P being the carry

out. When both A and B are present, a further digit is added to the sum (and carry), so

that the cell then functions as a full-adder[l].

It can be seen that the proposed array has 1 + _'=3 i whereas Dean's array [1] uses

1 + _*=1 i cells resulting in a overhead Of (n - 2) cells. However, the hardware inside the

proposed basic cell is much simpler, as it utilizes only half-adders, compared to full-adders

in Dean's array. So the increase in the number of cells is offset by the reduction in the

complexity of the individual cell. This leads to the authors contention that the hardware

overhead which translates into increased chip area is almost negligible. Moreover, the

propagation time through the proposed array is only nr as compared to (2n - 3)r which

is the delay through Dean's array. The hardware overhead-speed gain relation follows the

square law for most specialized arithmetic arrays. Here, an increase in speed has been

accomplished with a linear increase in hardware.

The proposed array has a number of unused inputs which can be used to add in an

other number so that the array would function as a full squarer (all outputs inl state).

A specialized array of this sort has a number of applications including the generation of

binary logarithms[2] which depends on iterative squaring.

4 Conclusions

A new cellular array for extraction of squares of binary numbers has been presented. An

squaring algorithm based on the formula (z + y)2 has been described. The proposed array

provides impressive speed gains compared to the existing arrays at the expense of negligible

hardware overhead. It is hoped, that the algorithm discussed in this paper will provide

fresh insights, to reduce redundant hardware present in most of the existing squaring

arrays.

References

[1] K. J. Dean, Cellular Logical Array for Obtaining the Square of a Binary Number,

Electronic_ Letters, Vol. 5, Aug. 1969, pp.370-371.



2.4.4

[2] K. J. Dean, A fresh approach to logarithmic computation, Electron. Engng., 41, April
1969, pp.488-490.

[3] K. Hwang, Computer Arithmetic: Principles, Architecture and Design, John Wiley
and ,.qons, 1979.

Figure I: Proposed Squaring array for three bit numbers

i

L

ffi

Y W

V v-

U

Figure 2: Basic ceil used in the proposed-squa_ ar_y
== =

=



3rd NASA Symposium on VLSI Design 1991 2.4.5

a2

\
0\

al a.o

V,o

Figure 3: Proposed squaring array for four bit numbers

0 o 1 o

o1__ __0

-j CAFF J CAFF J CAFF __
-_--L-_-L.,. -_--L,y

Z _,.FF J ¢ ff J O*FF -

C

-----L

( AFF
_ .....J

0

Figure 4: A three bit squaring array using the general algorithm



2.4.6

E

A

l

CAF cen

\

r_ E

Figure 5: Basic cellused in the general three bit squaring array

a2 ao

Figure 6: Dean's

al Vo,

array for three bit numbers

=_
z

z



3rd NASA Symposium on VLSI Design 199I 2.4.7

B S A

",.l.

Figure 7: Basic cell used in Dean's array



E

Z

L_

|



3nd NASA Symposium on VLSI Design 1901

N94-18344
2.5.1

Fault Tolerant Sequential Circuits
Using Sequence Invariant State

Machines

M. Alahmad and S. Whitaker

NASA Space Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - The idea of introducing redundancy to improve the reliability of

digital systems originates from papers published in the 1950s. Since then_

redundancy has been recognized as a realistic means for constructing reliable

systems. This paper will introduce a method using redundancy to reconflgure

the Sequence Invariant State Machine (SISM) to achieve fault tolerance. This

new architecture is most useful in space applications, where recovery rather

than replacement of faulty modules is the only means of maintenance.

1 Introduction

Fault tolerance is essential feature for digital systems where reliability, availability and

safety are of vital importance. Such systems include aerospace missions, where a recovery

procedure must be employed as means of maintenance, rather than replacement procedures

which would be impossible during such missions.

Most digital systems can be divided into two functional blocks: the controller and

the data path. The controller is a sequential circuit that performs certain tasks based

on external and internal information. A programmable hardware architecture has been

developed that enables a controller's hardware to be designed without a knowledge of the

exact sequence of the input data to be incorporated [1]. This programmable architecture

is called a Sequence Invariant State Machine (SISM).

This paper will introduce a method to achieve fault tolerance in the SISM design

using dynamic redundancy. With this method, faulty controllers can recover and resume

operation. Two different architectures are proposed and analyzed in terms of transistor

count, size and fault detection. One architecture is clearly superior to the other.

2 SISM Overview

With the SISM realization, any flow table can be implemented without a change in the

hardware configuration. That is given the number of states m and the number of inputs

n, a hardware circuit is easily derived, that can implement any sequence of states.



2.5.2

A C, 1 [B,IA, 0]

B D, 01C, 1 B, 0[

C E, 0{D, 0 C, 0]

D F, 1 [E, 1 D, 1[

E A, 0IF, 01E, 11
*

F B, 0tA, 11 F,! I

Tab|e. _: Gen_eral 6-states, 3-input flow table.

0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

! 0 0 E
1 0 1 F

1 1 0 G

1 1 ! H

0 1 0 1

0 1 1 0

1 0 O0

1 0 1 1

0 O 00

0 0 I 0

0 0 00

0 0 0,0

0 0 !, 1

0 1 0, I

0 1 1,0

! 0 0, 1

I 0 1,0

0 0 0,1

0 0 0, 0

0 0 0, 0

0 0 0, 0

0 0 1,0

0 1 0,0

0 1 1,1

1 0 0, 1

1 0 1, 1

0 0 0, 0

0 0 0, 0

,k.

Table 2: State Assi_nmeot and Redundant States for Table _,.

Destiuation

State

Code_ ' _

I AllNext
b_a_es

Input {
Switch l -_
Matrix

Y

f

Next t
State Selectio
Logic

Figu[e _: _¢ner_ SIaM .A_.rc_itect_r_,

m

i
=

=

m

U



3nd NASA Symposium on VLSI Design 1991 2.5.3

Table 1 shows a general 6 states, 3-input flow table. The state assignment for this table

is shown in Table 2. Figure 1 shows the SISM architecture for one of the next state variables

in Table 2. There are two identical architectures for the remaining two variables. Only

the destination state codes are different. The Figure consist of the following components.

The destination state codes which are derived from the next state entries in the state

assignment table by inspection. For example, the destination state codes for state B

and state variable Vl are the next state bits Y/associated with state B. Therefore, the

destination state codes for state B are (000,110,101) under input states (11;12; Is)

and variables (yl; y2; ys)respectively.

The input switch matrix which is combinational logic that produces all the possible

next state entries for each current input state.

The next state logic which consists of an independent path for each of the present

states in the state assignment flow table.

• The storage element, a D-FF, that preserves the present state.

The current input state selects the set of potential next states that the circuit can

assume (input column in the flow table). The present state variables select the exact next

state (row in the flow table) that the circuit will assume at the next clock pulse.

3 SISM Implementation

Two pass transistor networks which make the SISM fault tolerant will next be discussed

and compared in terms of space and the number of transistors. The input switch matrix

is shown in both structures as a logic block, since it is identical in both designs.

3.1 FCS Design

A Fully Coded Structure (FCS) [4] network is defined as a funy specified pass network

circuit. A knowledge about the number of next state variables is sufficient to achieve this

design. Thus, the FCS is a design by inspection. Using Table 2 as a reference, three

state variables are required to implement this table. Therefore, eight unique states can be

represented. Each state will have an independent branch with all the variables as control

terms. Those branches are all connected to the output pass function. Only one branch

is activated by any combination of control variables at a given time, since each branch is

encoded uniquely. The output pass function is the logical OR or the summation of all

states. Figure 2 shows the complete FCS structure for the next state variable Y1 in Table

2. The other two variables have identical structure, but different destination state codes.



o I_/.,_ _ _
0

0 I "/1 I _ g 'Y1

o ,/3, I ! I

o , I_{ I I Io i _3

! '_1 t t { °
o i _ " o. Y,

0 I /1 Y3 _ _-[ FF :

1 I - - -

0 I,, I -I I

o '::1o , I I !
o i

o l I' Ys Y2 IF,

o ]3 " -
0 I -- : - "-......... ----:.......... : =-

Figure 2: $_ru¢_ure of t he-nex_ state vari_.ble Y1 using t_ _'CS _ructure. --

Z



3nd NASA Symposium on VLSI Design I991 2.5.5

3.2 BTS Design

A Binary Tree Structure (BTS) [3] network is defined as a pass network in which exactly

two branches join at every node and the control term of one branch is the complement of the

control term of the other branch. Generally, each control term is a single control variable

and the number of nodes exceeds one. A BTS network is constructed by partitioning

each next state variable in a specific manner until all the variables have been partitioned.

Therefore, a BTS network is also designed by inspection.

Consider the flow table shown in Table 1. Three variables are needed to implement this

flow table. The procedure is general and can be applied to any state machine. Firstly, start

with the output node and partition the variable Y3 into two branches. One of the branches

will have Y3 as the control variable and the other branch will have Yss as the control

variable. Secondly, for each node at the end of each of the newly constructed branchs,

construct two more branches for the control variable Y2 and its complement. Thirdly, for

each node at the end of the new branch, construct two branches for the variable Y1 and

its complement. With this step the design structure is completed. Figure 3 shows the

complete BTS structure for the next state variable 1/1. The other two next state variables

are identical in structure and only the destination state codes are different.

3.3 Comparison

The BTS and FCS structures both use pass transistor networks. The number of transistors

in the BTS structure is less than the number of transistors in the FCS structure, since

the BTS structure is partitioned around each control variable. In terms of space and size,

the BTS would appear to require less space. However, using the SISM compiler developed

by Buehler [2] to design the BTS structure, the space required for each design is basically

the same. The extra space available in the BTS structure is difficult to utilize. Using the

SISM compiler, a custom drawn SISM layout for one of the variables in Table 2, using

both structures, is shown in Figures 4 and 5.

3.4 Destination State Codes Implementation

The destination state codes are all the inputs that must be fed to either the BTS or the

FCS structure in order to implement a state table. The inputs can be driven in several

ways. They could be directly connected to VDD/VSS or they could be driven by the

output of a shift register. The input array could also be constructed as a programmable

memory such as EPROM.

In order to achieve programmability in the SISM structure, the data must not be hard-

wired. If data were implemented using VDD and VSS connections then, the programmable

nature of this design is limited to single mask programmability. Using a shift register will

achieve the programmability objectives. The shift register will, however, increase the size

of the ¢ircnit. If the EPROM is implemented on the IC, the size of the controller will also

increased but since an EPROM cell is considerably smaller than a D-FF, the size impact



2.5.6

/!
0 I
o ,1.21
o , "3, I

/I
0 I

o ' l_l ,
0 ;

1___
0

o j I

I ,/i
i :12]

o i '

!
1

=: == :

g,

Y_I t-
i,,_[

I

0 I
: , J ,

/3

o iz_o ,z_l ,
o ix3l ' I y,

°-,'I!'0 : hi Y_ ii:i

o.... ; I 1
I3 ' .... : :

D

FF

Figure 3: Complete struetuT,e for the variable Y1 using the BT$ architecture.

!:1



3nd NASA Symposium on VLSI Design 1991 2.5.7

-Me "--- --- _ ,_"!_ _ - :

k-" _ " H 1- -_.........._, _ I:i::_-,:1 - " :"

-H b _ -I'- -- ], H k - - F"//,'ti - ¢
' ",: I:II " :: ::'

. ._ :'; _,.,..

Figure 4: SISM layout using the BTS structure.

:"u,,'d,

Figure 5: SISM layout using the FCS structure.



2.5.8

Table 3:

A C B AI

B D C BI

C E D CI

D F!E DI

z AIF
F B A

G AiA
I

H AiA

El

FI

AI _ :

AI

Fully specified flow table.

i* much less than that for the shift register approach.

4 Achieving Faiil T01  iiF. 

in incorporat_g i'auii t0_--_ _n i di i ai system, t_ro a_proaches can be considered.

The first approacii is caihd stat|c redundancy, aJso no.own as fault masking, which/is_

extra components such that the effect of a faulty component is masked instantaneously.

The secoi_d gpproacg is Ca_e-d dyiiainle redundancy, which has _xtla components but only

ohe component operates at a time. if a bur is de_ec_ed in _he 6_erk_iiag/nodule, R is
switched odt and replaced bjr a Spare. This dynamic redundancy requires consecutive

actions of fault detection and fauR recovery [5].

The idea of dynamic redundancy to achieve fault tol_iance carl IJe apiJlied to tlie gISM

structure. Hence, t_e_ operating module _rs to _L[ [I_ p_t_lls _st_es_ 1_'_[ _g[_

se|ectio//ggic that construct the state machine.._nd-t--hee _p_.re_rts r_ t2 the__unu_ ih'zed
|o_c (redUndant _s) in the architecture. Therefore, if a fault has been detected in g

given state (i.e. the path that identifies that state), a s_are i3a[_i is switched to replace tile

current path and correct operation _s resumed. _ __ -

Most state mac_iiies do not u_ _ available s_S. _er_e_o_e, _'d_fi_ o-_'t_os_ _._
=

can t)e t-bought of as spare states and are redundant. To optimize the versatility and

robustness of a controller, theredundant states can be i_sed to replace any state which

exhibits a malfunction. By applying a method for reconfigtirabillty, the redundani s_.tE_

can be used to improve the reliability and to enhance the performance of aii iC.

With reference to Table 1, there age six states, therefore il/r_ v_al3ies are needed {{/

iri-iplement this flow table. With three variables, a maximum of eight states are available.

Six of these states are used ah_ tWo states are redundant. However, the n_e__ s_t_te entries

for each of the two redundant States have been assigned the initiaJ value (which is a safe

output in all cases) k-s s_o_ ifi Table_d__ w_th t_ _iimpi|on t_[/at s_e/_. |s t_e _n|t|_

S_ate. if State B _ested fauJty, _heil One of the redundan_ stiites, such aS state G, couid be

used to replace state B _o achie=ce correct operation.

Both the BTS and the FCS will have extra logic, aiid the reconfigurabillty method can



3nd NASA Symposium on VLSI Design 1991 2.5.9

be applied to use the extra logic. However, the location of a fault in the BTS can limit the

use of the redundant logic and therefore decrease fault tolerance. That is, if a fault affects

any of the transistors controlling Y1 or its complement in Figure 3, then the method is valid

and redundant logic can be used to replace that faulty branch. However, if a fault affects

Y3 or its complement then, there is not enough redundant logic to replace the entire faulty

section. Therefore, the redundant logic has limited capabilities in the BTS structure. An

identical structure can be added, but in doing so static redundancy can be achieved easily,

at the cost of increasing the structure size by a factor of two.

The FCS structure, possesses a good structure. If any s-a-fault or s-op faults occur at

the input or in the structure, then only one path (state) is effected. However, if a stuck-on

faults occur in the structure, then two paths (states) will be affected at most. For example

if a stuck at fault affects state B, then only the path that represents state B is affected

and can be replaced. However, if a stuck-on affects state B, then two paths will be enabled

at the same time. Therefore, the redundant logic can be used to replace this malfunction

state. Hence the FCS structure is more applicable if dynamic redundancy is to be used.

Furthermore, the redundant logic in the FCS structure does not mask any of the faults

that could occur in the structure. The reason being that the redundant logic does not

replicate any of the existing states. Therefore, a fault in the structure or even in the

redundant logic itself is testable.

5 Design Procedure

If any path in the FCS architecture becomes faulty due to the input being stuck at 1 or

stuck at 0, a stuck open or :s_ortea pass tranSistor, orany: other _mal_unch'on, then the

entire path is no longer correct and therefore must be replaced or recovered. To achieve

fault tolerance, three methods must be used. They are error detection, fault location,

followed by replacement and recovery. The primary concern is with the replacement and

recovery technique. Once the designer has concluded that an error has occurred in :a part

of the IC, fault detection and location techniques are then applied to detect and locate

the faulty part. If the faulty part is in the controller section of the circuit, then it must be

determined where the fault has occurred, and the kind Of fault that occurred.

Referring to Table 3, assume that the fault diagnosis has shown that state B is a faulty

state. This corresponds to the path (Y3; ]I2; Y1) in Figure 2, then the following steps are

applied.

STEP1

Examine the flow table at hand and determine which of the redundant states will be used

to replace state B. Since this flow table has two redundant states, State G is chosen. State

H could have just as validly been chosen, but for simplicity the next state in order was

chosen. Hence state G, (]I3; Y2;_-_) is chosen to replace state B.

STEP2

Modify the flow table to reflect the new changes. That is scan the flow table and replace

each next state entry of B with the new state G. Therefore, every where in the next state



2.5.10

Table

/1
A C

B D

C E

D F

E A

F G

G A

H A

4: Second step in

IG
IC

ID

IE
IF

rA

[A

L A

A C

B D

C

D

E

F

G

H

E

F

A

G

D

A

AI
GI

DJ

El

F_

Ai

AJ

Table 5: Thlrd step

the replacement procedure.

GIA

CiG :

D I C _!:

EID

FiE

AIF

CIG

AIA

in the replacement procedure.

entry of the state table, replace B with a G. Table 4 reflects this replacement process,
STEP3

Fill the next state entry of state G with the same next state entry as that of s{a{e B, Tha{

is the next state entries for G will be the same next state entrles for B providing that step2

was completed. Table 5 shows the result of this step.

STEP4

The next state entries for state B are modified in such a way that masks the kind of
permanent fault in the hard_.

1. If a stuck at fault, s-op or s-on faults occur at the input of the destination state codes

or in the inpu{ swi{cl_ ma{rix0r a s-a-i or s-aJ) fault on the destinationc0desl then
disabling the B state is sufficient. _

2. If a s-op is occurred in any of the variables, then the path is already disabled.

3. If a s-on fault occurs in any of the variables, then the destination state codes to the

faulty path must be identical to those of the new path the fault assumes. That is,

if the variable _ in state ]]]s-_uck on, then this state becomes ii;_lY-_2;Y1) which is

the same as state F. Therefore, the next state entries of state B must be the same as

thaL of state F. Hence, when State i_ is enabied, state B is also enabled. To achieve

m

==



3nd NASA Symposium on VLSI Design 1991 2.5.11

A

B

C

D

E

F

G

H

Table 6:

f, 4 4
C G A[

G A FI

E D ""'%..2 t

F E D!

A F E

G A F

A A

modified flow table.

yl y2 y3
0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

1 0 0 E

1 0 1 F

I I 0 G

1 1 1 H

0 1

1 1

1 0

1 0

0 0

1 1

0 1

0 0

i_ /2 /3

0 1 1

0 0 0

0 0 1

1 1 0

0 1 0

0 0 0

1 0 1

0 0 0

0 0

0 1

1 0

0 0

1 1

0 1

0 1

0 0

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 0

Table 7: Modified flow table.

correct operation, both states must have the same next state entries. As a result,

the fault is masked. Table 6 shows the resulting flow table.

STEP5

The new state assignment is then reflected in the modified flow table. Table ? shows the

state assignment and the next state entries assignment.

STEP6

The destination state codes derived from the modified flow table determine the new data

entries for the shift register.

With the completion of Step6, the operation of the circuit can be resumed with the

same expected results.

Two final points are worth discussing. Firstly, if the state machine does utilize all

of its states then an additional state variable must be added to allow this procedure to

be employed. In order to demonstrate the procedure, the flow table shown in Table 8

is considered. As can be seen there are no extra states. Therefore, a new state variable

is added and then the state assignment is revisited during the initial design to achieve

redundancy. The next state equations and the hardware implementation will reflect this

modification. The modified flow table is shown in Table 9.

Secondly, this method can be extended to achieve fault tolerance in the remaining parts

of the circuit. This would be achieved by determining the faulty part and reconfiguring



2.5.12

I"i
0

0

1

1

Y2 /2
0 A D Bolor
0 CIAIDI

1 DJBJAI

Table 8: General 4-states, 2-input flow table.

o o o AiD B]
0 0 1 B C
0 1 0 C A DI

0 I I D B A]

1 0 0 E A AJ

I 0 1 F k AI

1 1 0 G A AJ

1 1 ! H A A[

Table 9: Modified flow+table.

the s_ate machine in such a way as not to enabie t_e huity part

part to replace it.
, and to activMe another

[1] S. _]ta_er, S. 1VIanjunath and G. Maki, "Sequence Invariant State Machines", IEEE

Journal of Solid State Circuit_, Vol. SC-26, Aug. 1991, pp .

[2] David M. Buehler, "Sequence Invariant State Machine Compiler", Master Thesis,

Dept. of Elect Engr., University of Idaho, Moscow, Idaho, Dec. 199(J.

[3] G. Peterson and (_. Maki, "Binary Tree Structured Logic Circuits: Design and

Fault Detection", Proceeding_ of IEEE International Conference on Computer De-

Jign: V£SI in Computers, Port Chester, NY, Oct., 1984, pp. 671-676.

..................................

[4] D. Radhakrishnan and G. Maki, Digital System_ Design, EE 4_I0Lect, ure No_e_, _-

versify of Idaho, Fall 1989.

[5] Parag K. Lala, Fault Tolerant _ Fault Testable Hardware Design, Prentice-Hall Inter-

national, Inc., London 1985.

m

E

|

z

z

=--



3rd NASA Symposium on VLSI Design 1991

N94-18345
3.1.1

VLSI Architectures for Geometrical Mapping

Problems in High-Definition Image Processing

K. Kim

Superconducting Super Collider Lab.

2550 Beckleymeade Avenue

Dallas, TX 75237

J. Lee

Department of Electrical Engineering

University of Houston

Houston, TX 77204-4793

Abstract- This paper exploits a VLSI architecture for geometrical mapping ad-

dress computation. The geometric transformation is reviewed under the field

of plane projective geometry, which evokes a set of basic transformations to

be implemented for the general image processing. The homogeneous and 2-

Dimensional cartesian coordinates are employed to represent the transforma-

tions_ each of which is implemented via an augmented CORDIC as a process-

ing element. A specific scheme for a processor, utilizing fully-pipelinlng at the

macro-level, parallel constant-factor-redundant arithmetic and fully-plpelining

at the micro-level, is assessed to produce a single chip VLSI for the HDTV

applications under the current state-of-art MOS technology.

1 Introduction

Geometrical transformations are widely discussed in the field of digital image processing

such as high-definition televis_on(HDTV), image recognition, interactive computer graphics

and vision processing [1,2,3]. The primary interest of these transformations is to project

an image in a different domain, to extract additional signal conveying the information of

the image. Moreover, it affords value-added images over the conventional displaying via

the high resolution, definition, and flexible framing. Consequently, a geometrical mapping

processor is about to appear to support a real-time processing. In recent years, several

geometrical mapping processing modules have been developed and applied successfully for

an appropriate application, They are implemented either by popular graphics package or

application software accompanying an acceleration box [5], or a VLSI Processor [6]. We

are interested in a VLSI implementation of a processor to realize a real-time speed for TV

image processing, with a sufficient set of transformations to make a value-added display.

It has been known that two barriers have existed toward the development of such a pro-

cessor. The first is the lack of a sufficiently hlgh-speed arithmetic computation technique

to generate the mathematical functions required for geometrical mapping. The second is

the need for an extensive library of geometrical mapping functions. To overcome these,

two key techniques have been developed in [4,6]: The first is a very high speed radlx-2



3.1.2

signed-digit adder and the second is a pipeh'ued micro-programmable arithmetic function

generator. In this paper, we study the same problem with the goal of optimizing the overall

functionality and performance. We achieve this goal by improving the basic cell.

In the following section, we will review the requirement of the geometrical mapping

processor by introducing its definition and applications. In Section 3, we will study various

CORDIC schemes to implement a basic cel!i which can. be used to compose the necessary
function set for the geometric transformations.

2 Geometrical Mapper

Transformation of a sub-image requires a mapping of the sub-image from one point to

the transformed, pixel by pixel. To rearrange the image, it is necessary to cMculate the

destination address of each pixel, which is called a geometrical mapper =-==

In the field of plane projective geometry, transformatlon/.tom a point to another point

is represented as a multiplication in homogeneous, coordinates [10]. Let a 2-dimensional (__,

D) point pz = (z, y) is represented as (az, ay, a) in right-handed hsmog-eneous coordinates,

with a non-zero constant a. The vector p_ is referenced to an Origin (0, 0).:The most useful

transformations are translation, scaling and rotation, examples of which are respectively
defined as:

Trans(z,d): transiating p_ to (z + d,y) .....

Rot(z, 0) : rotating the vector p. by an angle of O about x-axis

Scale(z,c) : scaling the vector p_ by c along x-_s. : =_: : _ : _ _

(z,y). Tran ( , d) = (z +
(z, y) . Rot(z, 0) - (zcos0 - ysinO, zsinO + yeosO) (1)

. Scale( ,c) =

Or, the composite of 3 different transformations in 2-D is represented by

c . cosO sinO 0 =_

T= -c.sinO cosO 0 , (2)
cd 0 1.

which is called an afllne transformation. The arlene transformation is performed via a Set

of multiplication and trigonometric function.

Easily observed, the affine transformatlon is a necessary transformation to map a sub-

image into another area of the image domain, with sliding, re-sizing and proper roAa tion_,

Its immediate applications include sub-image generation for the multiple picture-in-picture

(PIP) TV, image template generation for the recognition and vision/graphics processing

Further sophisticate transformatioh useful for the general image processing _s the spher-

ical, which basically transforms between the plane and sphere surfaces. A spherical trarts-

formation from p_ to q_ = (u, v) can be represented by using a Set of elementary functions,



3rd NASA Symposium on VLSI Design I991 3.1.3

such as square root, division, and squaring operations.

r2_

x/r2 - z 2 -
ry

v---

 /r2 - x2 _
(3)

where r denotes the curvature degree of sphere surface. A conventional way to implement

the transformations starts from a software package, i.e., interactive graphics package. To

implement a dedicate hardware, possibly a set of modular structures in VLSI, it is necessary

to figure out a basic cell of those functions, and there has been two different approach: the

first based on a set of elementary function generators and the second on a programmable

module. For the first approach, fast function generators are necessary and the performance

is limited by the slowest function generator. Apparently, the trigonometric functions are

the bottleneck while being implemented via the first idea. To optimize the trigonometric

function generation, while considering the regularity of its structure, CORDIC has been

suggested the recursiveness of the CORDIC iteration has been misleading a concept that

the second approach is not usually better than the first one.

Recently, as VLSI technologies evolve, the effectiveness of the integration is not simply

a complexity of the multiplication but also implies a communication complexity more

than the multiplication complexity include regularity of the structure, simplicity of the

design and localization of the interfacing. In these senses, CORDIC has been widely

reviewed again, and shown to be appropriate for a couple of algorithmic processors. In

brief, C ORDIC is a set of recursive algorithms, which can be easily programmed to generate

a set of elementary functions via a different mode and a proper zero-enforcing. It is also

capable of vector-oriented processing.

3 CORDIC Techniques

In this section, we will review CORDIC functions to i) perform a vector transformation and

ii) generate elementary functions. CORDIC comprises of three linear recursive equations,

namely X-, Y- and Z- recurrences. Table 1 summarizes the computing mode, input

and output specifications of CORDIC functions of our interest. As shown in the Table,

these functions axe classified into two cases, one which enforces Z[N] to be zero (known

as rotating ) and the other which enforces Y[N] to be zero(known as vectoring ). We will

discuss these cases in the following sections.

3.1 Rotating case

The vector rotation for pz = (X[0],Y[0]) by the angle 0 can be realized by an iteration

algorithm called CORDIC [12] instead of computing trigonometric functions and applying

matrix multiplication. CORDIC realizes a vector rotation by a partial sum of micro-angle

rotations with a pre-fixed sequence of angles. When the rotation macro-angle is represented



= =

3.1.4

Mode I Input EnforCing Output

Circular Z[0.!. =.8,(X[0],Y[0] Z[N] = 0 Rotation by O

Circular Z[0] = 0,(X[0],y[0]) Y[N] = o

Linear Z[O] = O, (X[O], Y[O)

hyperbolic (X[O], Y[O]

Table 1: Available

Y[N] = 0 "

Y[N] = 0

x[N] = v/X[@ + Y[0p
Z[N] = tan-'(Y[O]/X[o])

Z[N = Y[O]/X[O]
= 4x[0] - vt0],

CORDIC Proces_ittg

as a sum of decomposed micro-angles, i.e O = _=0 Ok,

r= = tanO_ 1 P" (4)
k=O

Where kk = cos$i,k is a rnicro-sscde _composing.a_finM. sc.ale factor, exp_ iMned later. Such

K si3ecl_c ]'orm o]_ the pre-fixed micro-arigle sequence aS _an -* 2 -i, is attractive for VLSI

implementation since it is composed only of additions, shiftlng_, and a arctkngent lookup
table ...... : .

Non-redundant : The micro-Rei:Mions of the conventional (hereafter, it will be called

non-redundant ) CORDIC rise the following 3 linear recursive equations [12]:

Y[i 4 i] = Y[i]- #,2-'XI_]

z[i + i] = g[i] - _ tan -_ 2-' (5)

where m _ be set to one for t_te drcu]ar _)Rgi-C, Wlllie rn 0 for t_e lifieal: and --i

for the hyperbolic. With an initlal v_ue of Z[0] :2_, L'rORDm rotates ]ni?lal _ues of

X[0] and Y[0], to thelast value X:[n] and Y[n] while making Zi_] close tO zero in each i

iteration, So that Z[n] is forced to be zero. With n number of iterations, n-bit accuracy of

X[N] and Y[N] can be achieved. For a known angle, the direction of the rotation, o-_can

be pre-computed or calculated one by one on-the-fly using the following selection function.
: ?: =7: __52 : ........... z

if z[q >__o
o'i = 1 if Z[i I < 0 (6)

_The CORDIC rotation cloes not preserve ihe input norm. To get a rotated vector having

the same length as the input (X[0], Y[0]), X[nl(Y[n]) needs to be compensated by a scaling
factor K

K- ][[X[n]'Y[n]]t_ "--_= H + (7)
II[X[Ol,Y[ollql ,=0

where [['[I stands fqLt_e =ngrm of the Ve(:_0r. Note that g is constant fo_ the no_-i:edundant

scheme since tri is in {-i, 1}.



3rd NASA Symposium on VLSI Design 1991 3.1.5

Redundant : Non-redundant CORDIC is slow inherently with delay of O(n 2) due to

its recursiveness and serial dependency, since a micro-rotation with delay O(n) should be

finished before processing the next micro-rotation. Delay performance of a macro-rotation

(n micro-rotations) can be improved from O(n _) to O(n) by using redundant arithmetic

(carry-free addition such as carry save or signed-diglt addition) to determine the direction

of the rotation &_, based on an estimate instead of an exact value [14]. The redundant

arithmetic gives a delay of O(1) instead of O(n), and the estimation of direction is necessary

not to erode the advantage of O(1). This requires the modification of the recurrences and

selection function. This redundant CORDIC scheme produces the output about 4 times

faster than the non-redundant [14]. However, it introduces additional cost since the scale

factor K is variable depending on a macro-angle by allowing bl to be in {-1, 0, 1}.

Constant-Factor-Redundant : To reduce implementation cost of redundant CORDIC,

it would be good to have a constant scale factor by forcing b_ in {-1, 1}. However, since b_

is determined from an estimate, there arises a convergence assurance question. A scheme

appending correcting iteration stages at proper positions was proposed for it [15]. Along

to this idea, the number of extra correcting iterations is further reduced by dividing the

micro-iterations (for i = 0 to i = n - 1) into two groups: one group where the direction of

the rotation is in {-1, 1} for i = 0 to i = hi2 and the other in {-1, 0, 1} for i = (n + 1)/2

to i = n - 1 correcting iterations by 50 _ since correcting iteration is not needed for the

second half of the micro-iterations and we still obtain a constant scale factor K since the

value of K in n-bit precision does not depend on the b value for (n + 1)/2 < i < (n- 1). Z-

recurrence also can be modified so that bi is determined quickly by looking at a few most

significant bits. This new scheme is called Constant-Factor-Redundant-CORDIC(CFR-

CORDIC). The modified recurrences and selection functions for the scheme are described

below.

X[i + 1] = X[i] + _,2-'Y[i]

V[i + 11 = Y[i]- _,2-'x[i]

u[i + 11= 2(u[i] - _,2' tan-12-') (s)

where U[i] is for the implementation simplicity, which is equal to 2_Z[i], and the selection

function is given as follows:

1 if Lr[i]> 0
or rY[i]= 0n i < n/2

bl 0 U[i]= 0 fqi > n/2
..... -1 if Oil]< 0

(9)

^

When t fractional bits are used in the estimate value, i.e., U[i] is computed using

fractional bits of redundant representation of U[i], the following correcting iteration need

to be included, where the interval between indexes of correcting iterations should be less

than or equal to (t - 1) up to the last iteration index equal to n/2. When the correction

stage is necessary at the jth step of mlcro-iteratlon,

Uc[j + 11 = U[j + 11- 2b_2Stan-J2 -j (10)



3.1.6

with the direction of the rotation _ determined from the same selection function of eq.(9),

except being decided based on O'[j + 1] instead of U[i].

web •+ 1]= W[j + 11- 2_7x[1 + 11 (15)

So far, we discussed about recursive structures of several CORDIC schemes to imp!_e-

ment the basic PE. _e PE, augmented by a transiator, necessitates scaling operation at

each stage, because shuffling of the output at each stage makes continuous accu_m_ation

Of the:: send,actor: complex to_e processed: at thegn]stage. The scaling operat_6_

has been solved either by an explicit way or an implicit. The explicit way is dividing the

rotated vector by a constant, which is known for the non-redundant, to be calculated while

running the micro-steps of CORDIC [12,14]. The division can be processed by another

O_6Ri)i(J (in a linear mode) or a _v_der:-The implicit apl_roach reconfigur_ t-F_:_ee

of micro-iterations of the CORDIC, eventua_y to have a different norm from that without

3.2 Vectoring case ...............................................

While the rotating case affords vector-wise rotation to implement a geometrical mapper,

the vectoring case does elementary functions as in Table 1. Apparent difference between

the vectoring and rotating mode is the zero enforcing parameter, which necessitates a

different selection function. For the conventional CORDIC, the recurrence equations are

given:

X[i + 11 = X[i I + ai2-1Y[i]

Y[i + 11 = Y[i] - tri2-'X[i]

Z[i + 1] = z[i] + _ tan-' 2-'

with the following selection functioii,

f 1 _ :itr[q >o
ai=_ -1 if Y[/]<0

The selection function for CFR-CORDIC in vectoring has been developed shown below:

Let W[i] = 2¢Y[_] in the same token as _or the ro_at|ng Case, then :

X[i + 1] = X[i] + _2-;Y[i]

z[i + 11= z[i] + _, t=-' 2-' (la)

1 if l_r[i] > 0

or l_r[i] "- 0 fqi < n/2 (14)

-! if_[q < 0

Here the correcting stage at the jth step is defined as follows:- ........

(11)

(12)



3rd NASA Symposium on VLSI Design 1991 3.1.7

scaling micro-iterations. Scaling micro-iterations target in general at making the adjusted

scaling factor in a form of 2 i or 1, which can be easily set to the unit size. Each micro-

iteration can be composed of i) reduction axis-scallng [16], ii) repetition of vector-scaling,

iii) expansion axis-scaling or combinations thereof. Relevant issues regarding search for
the solution are to be further studied, better than the greedy method or the decomposed

search [18]. In summary, the explicit scaling almost doubles the system complexity, while

the implicit increases 25 % for non-redundant CORDIC and about 30 % for redundant

CORDIC.

3.3 VLSI Scheme

To maximize the throughput of the geometric processor, the fully spanned architecture is

selected. Affine transformer is a trivial case, which can be implemented by using a single

CORDIC of which micro-iteration is expanded to include an addition. To implement a

spherical transformer, 4 CORDICs are configured: i) circular square root of _/z 2 + y2,

ii) hyperbolic square root of _/r _ _(_)2, and two iii) linear divisions of u and

v. To get first estimates of the VLSI size, a typical TV image processing application is

considered: O(105) pixel/image addressing and O(lO-1)sec screen iaashing. For the case,
the number of input bits bi ,_ _/pizel number, for which 12 bits are sumcient. To allow

possible interpolations between pixels, b! is set to be 16. Each CORDIC module requires

(b_ + log2bl) steps of micro-iterations, and 30% additional iterations for an implicit scaling.

For the spherical transformer, using fully spanned 4-CORDIC, the number of TRs are

estimated about 30K (4"6K'1.3).

References

[1] R. NichoU and T. Nicholl,"Performing Geometric Transformations by program Trans-

formation," A CM Trans. on Graphics, Vol. 9, No 1, pp.28-40, 1990.

[2] N. Ansari and E. Delp,"Recognizing Planar Objects in 3-D Space," Proc. of SPIE, Vol.

1197, pp.127-138, 1989.

[3] R. Cossu, M. Ercoli and L. Moltedo,"Extension of CGI functions for Generation and

Manipulation of Raster Image," Computers _l Graphics, Vol.13, No 1, pp.39-48, 1989.

[4] T. Nakanishi and H. Yoshimura,"A High-speed Address Generator for Affine Transfor-

marion," Nat. Cony. IECE, 1985.

[5] ACM/SIGGRAPI-I Graphics Standards Planning Committee, Report of the CORE

Definition Subgroup, 1977.

[6] H. Yoshimura, T. Nakanishi and H. Yamauchi, "A 50-MHz CMOS Geometrical Map-

ping Processor", IEEE Transactions on circuits and systems, Vol 36, No. 10, pp.1360-

1364, October 1989



3.1.8

[7] K. Arbter and et.al., "Application of Afline-invariant Fourier Descriptors to Recogni'

tlon of 3-D Objects," IEEE Tran,. Pattern Analyai, and Machine Intelligence, Vol. 12,

No 7, pp._40-647, July 1990.

[8] T. Wakahara, "On-fine Handwritten Character Recognition lJsing Local A_ine Trans-

formation," Sy, tems and ComputerJ in Japan, Vol.20, No 7, pp.10-19, July 1989.

[9] K. hono, M:-T0yokura and T.._ralki, "30nsec (600 Mops) Image Processor with a

Reconfigurable Pipeline Architecture," Pros. IEEE 1989 CuJtom Integrated Circuits,

pp.24.4.1-4, 1989.

[10] E. Maxwell, General Homogeneous Coordinates in Space of Three Dimensions, The

University Press, Cambridge, England, 1961. -

[11] J. Eldon, Z. Stron and E. Swartzlander,"Image Processing Address Generator Chip,"

Proceedings of IEEE Int. Conf. Acoustics, Speech, and Signal Processing 5, pp.993-996,

1985. _ _: .....

[i2l J.-_/_alther_r_.-_n]_ea -Aigorit}im-for Eier,4_tary Functions '_, AFfP-S Spring Joint

Compu_er_onference, pp.37g-3Bl_, I971.

[13] H. Kung,"Let's Design Algorithms for VLSI Systems," CaIteeh Conf. VLSI, pp.65-90.
1979.

[14] M. Ercegovac and T. Lang, "Redundant and On-Line CORDIC: Application to Matrix

THangularization and SVD", IEEE Trans. on Computer_, Vol. C-39, No 6, pp.725-740,
June 1990.

[15] N. Takagi, T. Asada and S. Vajqma;_dundant CORDiC Methods wi_ aConstant

Scale Factor for Sine and Cosine Computation", Submitted to IEEE Trans. on Com-

puters, 1989. ....

[16] G. Havilanc] and A. Tuszyns]d,'_A {3_3R.DIC Arithmetic Processor Chip," IEEE Trans.

on Computers, Vol C-29, No 2, pp.68-79, Feb. 1980.

[17] 3. Delosme, "VLSI Implementation of Rotations in Pseudo-Euclidean Spaces" , Pro-

ceedings of IEEE Int. Conf. Acoustics, Speech, and 3ignal Processing _, pp.927:930,
1983.

[18] J. Lee and T. Lang, "Matrlx 'i_riangularization by _ec]-point Redundant CO_i)_[C

with a Constant Scale Factor" , Pros. SPIE Conference on Advanced Signal Processing

Algorithms, Architectures, and Implementations, July 1990.

[19] S. Note et. al.,"Automated Synthesis of a High Speed CORDIC Algorithm with the

CATHEDRAL-IIi Compilation System", Int. Con/. Circuit and SyJtem, pp.581-584,

1988.



3rd NASA Symposium on VLSI Design 1991

N94-18346
3.2.1

Performance of Defect-Tolerant
Set-Associative Cache Memories 1

J. F. Frenzel

Department of Electrical Engineering

University of Idaho, Moscow, Idaho 83843

jfrenzel@groucho.mrc.uldaho.edu, 208-885-7888

Abstract- Increased use of on-chlp cache memories has led researchers to

investigate their performance in the presence of manufacturing defects. Sev-

eral techniques for yield improvement are discussed and results are presented

which indicate that set-assoeiatlvlty may be used to provide defect -tolerance

as well as improve the cache performance. Tradeoffs between several cache

organizations and replacement strategies are investigated and it is shown that

token-based replacement may be a suitable alternative to the wldely-used LRU

strategy.

1 Introduction

The dramatic increase in cache memory size and diminishing geometries has resulted in

lower yields. Today's high performance processors often have on-chlp cache and conse-

quently the yield of these memories can be a significant factor in determining the ultimate

cost of the processor. One way of increasing yields is to provide defect-tolerance through

the use of redundant resources. Two methods for achieving defect-tolerance are commonly

employed in the design of dynamic RAM (DRAM) memories, namely the use of error cor-

recting codes and spare rows and columns [5]. However, both techniques result in increased

circuitry and possible increases in access times.

Associative memories offer an alternative approach. By design, associative memories

have the flexibility necessary to function in the prescence of defects. With the inclusion

of control logic it is possible to force the memory to operate "around" the defect and use

alternative locations, albeit with a reduction in storage capacity. In the following sections

we will describe basic cache memory operation and then discuss the different techniques

for providing defect-tolerance.

2 Cache Operation

A cache memory is a fast intermediary memory positioned between a processor and main

storage. The goal of a hierarchical memory system is an average access time close to that

of the cache memory, at a cost per bit approaching that of the main memory. To achieve

the former the cache must be designed to keep the most frequently referenced items in the

cache. A system may designed with separate caches for data and instructions or a single

(unified) cache.

1This research was supported by NASA under Space Engineering Research Center Grant NAGW-1406



3,9..2

O_NAL P.&QE IS

OF POOR qUALIIW

2.1 org/inization

A cachememory is organized aS sets of blocks, where each block is typically 4 to 16 bytes

of data from main storage. In a direcf-mapped cache each set consists of only One block,

Whereas in a n:way, set-associative (SA) cache each set c0ntalns n blocks. The t0tal cache

size is the product of the block size, the number of sets, and the associativity, n.

2.2 Address Translation

Address references to the cache are Split into three fields, the widths of which depend

upon the cache size and organization. The block field is used to index a particular item

within a block and is log 2 b bits wide, where b is the humber of addressable items within

a block. If s is the number of sets in the cache, then the set field is log 2 s bits wide and is

tised to indlc_ a pa_cula_ f_ access. _ i'ei_n_ng-_i_s a_e-____

_nd are use-d _o d_sting_sil between ot_i_ l_iocks ot m_n memory which may be stored

in the same set. Each block in a set has storage to hold both the block data and the t_i_

associated with that block. The collection of tag storage for th e cache is referred__to as the

tag direcf, o r_. During a memory access, the tag field for the address is compared with all

entries in the tag directory corres_/ondlng to the rei_re-ficed set. If the/_ is a m_tc_, _i/e
data from the matched block is sent to the processor. If there is no match, referred t_

a miss, then the missed data must be loaded from ma_n memory.

On a miss, the cache must decide where to place the block from main storage which

caused the miss. For a direct-mapped cache the decision is trivial, as each block from
........................................................................

main storage maps to a single block in the cache. However, with a set-associative cache,

assuming the referenced set is full, there are n possible blocks to replace. One of the best

replacements__ _=_= algorithms is referred to as least recently used (LRUI, where the s=et_s treaCed

as a stack__an_d__accessmg a pa_rt_ _ movesth_at_bloc_ fo thetop o-f t_hesta_ck._T_e

least recently used bloc_ is _l-wKys at _ _ o-_ tl_e stacl_ and a miss _oloa_ Flie

data into this block and move it to the top of the stack. E_cient implementations of the

LRU replacement algorithm require rt(n - 1)/2 bits of storage per set to maintain the rt!

possible stack configurations. Consequently , a 4-way SA cache requires 6 bits of storage

per set, while an 8-way SA cache requires 28 bits per set. Addlt[_ circuitry is _ to

update the stack configuration as a result of an access. Alternative replacement strategies

are first in, first out (FIFO), and random. _ FT_O algorithm is implemented using i/

modulo b counter for each set , incremented_ on every miss to that set. One tech_que_for

implementing a pseudo-random replacement strategy is to Use a single modulo b counter

for the entire cache and increment it on every miss, regardless of the set. This will be

referred to as token-based replacement.



3rd NASA Symposium on VLSI Design 1991 3.2.3

2.4 Discussion

Several observations may be made in comparing direct-mapped caches to set-associative

caches. First, for a given cache size, the tag field and subsequently the tag directory will

be larger for the SA cache. This is because the n-way, set-associative cache will have 1In

the number of sets as the direct-mapped cache, needing fewer bits in the set field, and

increasing the number of bits in the tag field. Second, for the set-associative cache, n

comparisons must be conducted in parallel between the tag field and the entries in the tag

directory. Furthermore, the set-associative cache has an additional delay over the direct-

mapped cache as a result of the need to multiplex the data from each of the blocks in

the referenced set to the output. Lastly, the SA cache has additional circuitry needed to

implement the replacement algorithm.

3 Defect-Tolerance Strategies

3.1 Spare Resources

There are several methods for implementing memory reconfiguration in the presence of

defects: electrically programmable links, electron-beam programmable fuses, and laser

cutting/welding [6]. These techniques can be employed to bypass faulty resources and

activate spare units. The most common technique for increasing memory yields is to include

spare rows and/or columns in the data array and sufficient programmable decoders. While

all implementations increase the circuit area, some methods may also increase the access

times and power dissipation [5]. Furthermore, unless special circuitry is added it is usually

not possible to test the spare rows/columns without first programming the decoders.

It has recently been observered that manufacturing "throughput", measured in usable

chips per unit time, is dominated by the delay associated with repairing defective parts

rather than the process yield [2]. These researchers argue that efforts should be directed

at maximizing the throughput, rather than the yield, and propose algorithms for achieving

this by balancing repair time and yield of repaired parts. Previously, production experience

with a 64K DRAM indicated that the repair algorithm typically took several seconds and

represented roughly half of the entire test time [10]. The next two sections describe methods

which eliminate the time needed to execute a repair algorithm.

3.2 Error Correcting Codes

Error correcting codes can be used to correct single or multiple errors in the tag directory

and data array caused by manufacturing defects. Codes may be selected to provide a

guaranteed level of protection at a corresponding increase in circuit area and access time.

A 16-bit word would require 6 extra check bits to detect and correct all single errors.

In addition to storing the check bits, additional circuitry is needed to encode or decode

during memory accesses. For large words, where the use of check bits is most efficient,

the delay associated with this circuitry can be significant. Results of a timing analysis are



3.2.4

presented in [11] which indicate a 20% increase in access time using single error correction,

double error detection coding of the tag directory and data array. For these reasons, error

correcting coding is generally reserved for applications which require tolerance of transient

errors incurred during normal operation. However, Mostek built a 1-Mbit ROM with a

32-bit word that achieved a 3-fold improvement in yield at=a 20% increaseinarea [8].:

A distinct advantage of error correcting coding is the lack of any "repair" time. As men-=
tioned earlier, the delay associated with this process can severely affect the manufacturing
throughput for the part. ....

3.3 Associativity

Sohi observed that a cache memory does not have to be defect free to meet its objective,

namely reduce the average memory access time of a hierarchicM memory system [11].

A direct-mapped cache memory with a defective block will never be able to hold items

from main memory which rnapt0 thatsetin _the cache. Fora cache to operate properly

under this condition two things are necessary: one, the cache must be able to recognize

a defective block and generate a miss and two, must havethe capablfity ofpefforrning a

load through, so that the processor can access the item. An associative cache has alternate

locations _thin a set which can beused when thereis a defectiVe bioek present[ ideally I

the circuitry which implements the replacement algomrthm would be modifled at test time

to exehde defective blocks from selection during replacement' Provided each set has at

least one good block all items from mair_ memory can map to a good location in the cache.

4 Related Work

Patterson et al. described the implemen.tation of a cache memory in which each cache block

was provided with a .[aul_ _olerant bit, which could permanently invalidate a cache block.

Set-associativity was achieved through the use of multiple chips and block replacement

was directed by a token [7]. Accessing a bad block would result in a miss.

More recently, Bergh et al. designed a fully associative fault-tolerant memory. Extra

logic, amounting to a 2% increase in area, allowed the memory to completeiy bypass
defective locations transparent to the user [1]. _ == _ =- .... ....

7

Finally, Sohl investigaied--thepe_rmance under defects, as measured bY miss ratio,

of three different cache organizations: direct-mapped, 2-way set-associative, and fully'

associative [11]. His research illustrated that it is possible for a 2-way set-associative cache,

using a LRU replacement strategy, to outperform a direct-mapped cache of equivalent size
in the presence of defects.

This paper attempts to extend the work of Sohi in evaluating th_ benefits of associa-

tivity for the purpose of defect-tolerance. In this paper I focus upon set-associative cache

memories for the following reasons:

• fully-associative caches are generally not required for many applications and _e

prohibitively expensive;



3rd NASA Symposium on VLSI Design 1991 3.2.5

(words)

% Change in Hits Compared to 2K, DM Cache

Size I[DMII 2-way, SA _AI_LRU [ FIFO I Token

2K 0 2.2 1.7 1.8 3.5 2.8 2.9

4K 5.0 7.6 7.2 7.2 8.8 8.2 8.2

8K 9.6 12.0 11.7 11.8 13.1 12.6 12.7

Table 1: Performance of Defect-free Caches

• set-associative caches possess the flexibility necessary to reduce the impact of defects.

Specifically, this paper investigates set-associative caches of various organizations under

three different replacement strategies, least recently used (LRU), first-in, first-out (FIFO)

and token-based. The LRU strategy is widely accepted as the superior strategy, although

costlier to implement [9].

5 Simulation Methods

Performance evaluation was conducted using address trace simulation. The address traces

were generated from runs of SPICE, gcc, and TEX , for a total of over 2.8 million references,

approximately 75% of which were instruction references [3]. All address references were

assumed to reference items of the same size, namely one word. A wide variety of caches

were studied; however, in all cases the block size was held at 8 words and the cache was

treated as a unified cache (instructions and data).

Three different cache sizes were simulated, ranging in size from 2K words to 8K words.

For each size, three different cache structures were investigated: direct-map, 2-way set-

associative, and 4-way set-associative. Each associative cache was simulated using three

different replacement strategies: least recently used (LRU), first in, first out (FIFO), and

token-based. Lastly, each associative cache was simulated under three different levels of

defects, ranging from zero to 25%.

During defect simulation each cache was simulated forty times, each iteration using a

random distribution of defects. Furthermore, defect-levels were limited and the defects

distributed such that each set was guaranteed to have at least one good block. The

replacement strategies were modified from the traditional descriptions to prevent loading

a missed block into a defective location.

6 Results

6.1 Defect-free Performance

Table 1 shows the percent change in the total number of hits for various cache organizations,

relative to the total number of hits for a 2K, direct-mapped (DM) cache. From this data we

can make several observations regarding the relative performances of various organizations

under defect-free operation:



3.2.6

Size

(words)

2K

4K

8K

% Change _n Hits Compared to 2K, DM Cache

I LRU ] FIFO I Token _ LR_ _roken
-1.0 -1.4 -1.6 1.9 1.2 1.3

5.7 5.4 5.2 7.5 6.9 6.8

10.3 I0.I 9.9 12.0 11.4 11.5

Table 2: Performance with 12.5% Defect-Level

• As cache size doubled there Was approximately a 5% increase in hits, relative to

a 2K, DM cache, across all structures and replacement algorithms. However, this

effect would eventually diminish as the cache " .............size approached that of the worldoad_
working set. . .......

• The token-based replacement aJgorithm was virtually identical in performance to the

FIFO algorithm for all cache organizations. While at first this may seem surprising,

neither algorithm is a "usage based" algorithm and consequently their performance
is roughly equivalent.

• LRU was the best replacement strategy, increasing the performance by roughly 0.5%

over the other algorithms. For a fixed cache size, the performance difference increased

wi_ associativRy. As the humber of bl0cl_s i_er _e_ increased, L_U-_s suerio_ _h
p ........ -

agement of those resources became more apparent. For a fixed associativity, n, the

improvement decreased with increasing cache size. This may be attributed to reduced
contention in the cache.

Doubling the associativity increased performance by approximately 2%, with the im-

provement diminishing as the associatlv]ty increased. Again, _s may be attributed
to reduced contention within the cache.

As cache size increases, there is less contention for space in the cache and performance

differences duc to associatlvlty and rep|accment strategies tend to diminish. The same is

tr_e for a fl.xed cac_ _s_ assoc_y ]nc_, particularly under_LfiU replacement.

:6-:2: Performance under Defects

Tables 2 and 3 detail the results of simulating various cache organizations under two

different defect-levels. As in the first table, the numbers represent the percent change in

the total number of hits, relative to a defect-free, 2K, DM cache. At the 12.5% defect-level,

there was a drop in performance that was a function of both cache size and associativity,

but not replacement strategy. For example, all 2K, 4-way, SA caches experienced a decline

of approximately 1.6% from their defect-free performance. This can be attributed to the

fact that each replacement algorithm was modified such that missed data would never be

loaded into a defective block. The average number of bad blocks per set is equal to the

product of the associativity and the defect-level. So at a 12.5% defect-level a 2-way cache



3rd NASA Symposium on VLSI Design 1991 3.2.7

% Change in Hits Compared to 2K, DM Cache

SizeIL 2waySAII 4waySA(words) LRUIFIFO ]Token LRU]FIFO I Token

2K -4.1 -4.4 -4.7 0.2 -0.5 -0.4

4K 3.8 3.6 3.4 6.0 5.4 5.3

8K 8.5 8.4 8.0 10.7 10.2 10.1

Table 3: Performance with 25% Defect-Level

will have, on average, 0.25 bad blocks per set, or one bad block for every four sets, while

a 4-way cache will average one bad block for every other line. Consequently, the effect of

defects is to decrease the associativity. At low defect-levels, and particularly for low values

of associativity, the decrease will be minor and thus the performance differences between

replacement algorithms will remain approximately constant.

In general, the larger the associativity or the total cache size, the smaller the drop in

performance due to defects. Increasing associativity or size are two methods for reducing

contention in a cache and consequently it is expected that defects would have a lesser effect

on these caches. Another important observation, is that all 4-way, SA, 2K caches, regard-

less of replacement algorithm, outperformed the defect-free, DM, 2K cache. Furthermore,

for caches larger than 2K, all associative caches with a 12.5% defect-level outperformed a

defect free DM cache of equivalent size. This is a clear example of using associativity to

provide defect-tolerance and a performance improvement. At a defect-level of 25%, only

the 4-way, set-associative caches outperformed the defect-free, DM caches.

Other researchers have suggested that the use of associative cache memory may be on

the decline because as cache memories increase in size the performance difference between

direct-mapped and set-associative will decrease [4]. Furthermore, a DM cache is always

smaller and faster than a SA cache of equivalent capacity, due to the extra circuitry required

to implement the associativity. From our limited trims it is difficult to validate such a trend

in performance. An 8K, DM cache had 9.6% more hits than a 2K, DM cache, whereas the

2-way, SA cache had 12% more and the 4-way had 13% more. These differences are similar

to the differences observed for 2K caches. Of course, common sense dictates that as the

cache size approaches the size of the working set the differences will diminish. While this

may occur soon for board level cache memories, the author suspects that on-chip cache

will continue to benefit from the use of associativity, due to size limitations. Doubling the

associativity and halving the number of sets requires less area than doubling the cache

capacity.

7 Summary

The results indicate that a set-associative cache can experience a significant number of

defects and still exceed the performance of a dlrect-mapped cache of equivalent capacity.

Secondly, although the LRU replacement strategy performed better than FIFO or token-

based replacement, the modest improvement, particularly at lower associativities and large



3.2.8

cache sizes, may not warrant the increase in control logic.

The fundamental question is: "Should associativity be used to increase manufacturing

yields instead of spare rows and columns?" To answer this, one needs to develop a cost

function capable of reflecting the impact of manufacturing throughput, circuit character-

istics (power, size, Speed), and cache performance as measured by _ss ratio. Several

observations may be made:

• If the cache access time is crltie_ and the appli'cation can not tolerate the additional

delay imposed by associativity then spare rows and columns are the only alternative

for increasing yields.

• If the chosen technology has matured to the point where manufacturing throughput

is not severely affected by the time needed to repair devices, then spare rows and

columns are probably the logical se!ecfion. A repaired part wiU be guaranteed to

have a full set of defect-free blocks and will have known performance characteristics.

• If, on the other hand, manuhcturing throughput is poor, due either to low yields

or lengthy repair times, then using associativity may be viable alternative to using

spare rows and columns. By doubling the associativity and halving the number of

sets, cache performance can be improved even in the presence of defective blocks.

Repair time will be minimal and simply involve marking defective bl0cl_s as unusable.

Research is being considered to evaluate the area overhead associated with enhancing

the replacement algorithms to avoid defective blocks.

Perhaps the blggest deterrent-rousing this approach may=be tile _t_cUity in marketing

such a device. Customers expect devicestobe 100% ciefect-free and-mig]at be unwilling to

order parts which are guaranteed to haye '% m axi'mum defect-level," particularly as two

devices with the same defect-level will not perform identically on the same workload.

References

[1] Harald Bergh et al, " A fault-tolerant associative memory with high-speed operation,

" IEEE Journal of Solid-State Circuits, pages 9!2 - 919, August

[2] Ramsey W. Haddad et al, " Increased throughput for the testing andrep_rof RA_M's

with redundaiicyl _" iB_EE _l"ransaci-ionso-n - _omputers, pages 154 ± i66, February
!991.

[3] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann Publishers, 1990. .......

[4] Mark D. Hill, " A case for direct-mapped caches, " IEEE Computer, pages 25 - 40,
December i988.

[5] Will R. Moore, " A review of fault-tolerant techiniques for the enhancement of inte-

grated circuit yield, " Proceedings of the IEEE, pages 684 - 698, May 1986.

=

E



3rd NASA Symposium on VLSI Design 1991 3.2.9

[6] R. Negrini et al, Fault Tolerance Through Reconfiguration in VLSI and WSI Arrays,

chapter 4, The MIT Press, 1989.

[7] David A. Patterson et al, " Architecture of a VLSI instruction cache for a RISC, " In

Proceedings of the Tenth Annual Symposium on Computer Architecure, pages 108 -

116, June 1983.

[8] T. Shinoda et al, " A 1Mb ROM with on-chip EEC for yield enhancement," In IEEE

International Solid State Circuit_ Conference, pages 158 - 159, February 1982.

[9]

[10]

[11]

Alan Jay Smith, " Cache memories, " A CM Computing Surveys, pages 473 - 530,

September 1982.

Robert T. Smith et al, " Laser programmable reduncaney and yield improvement in a

64K DRAM," IEEE CJounral of Solid-State Circuits, pages 506 - 514, October 1981.

Gurindar S. Sohi, " Cache memory organization to enhance the yield of high-

performance VLSI processors, " IEEE Transactions on Computers, pages 484 - 492,

April 1989.



7-r _ _ _= i _ = _C_i !£ii _

F

L

!I=

m

E

r



3rd NASA Symposium on VLSI Design 1991

N9 :-18347
3.3.1

SP R O C w A Multiple-Processor DSP IC
R. Davis

Hewlett-Packard ICBD

Corvallis, OR

Abstract- A large single-chip multiple-processor digital signal processing IC fab-

ricated in HP-Cmos34 is presented. The innovative architecture is best suited

for analog and real-time systems characterized by both parallel signal data

flows and concurrent logic processing. The IC is supported by a powerful devel-

opment system that transforms graphical signal flow graphs into production-

ready systems in minutes. Automatic compiler partitioning of tasks among

four on-chip processors gives the IC the signal processing power of several

conventional DSP chips.

1 Introduction

Digital signal processing (DSP) involves the real-time acquisition of analog (continuous)

inputs, their analysis and processing in a digital system, and subsequent synthesis and

reintroduction back to the analog domain.

Conventional DSP chips are tuned for fast multiply and multiply-and-accumulate (MAC)

algorithms on serial data steams such as required for filtering and spectral analysis. These

algorithms take the ubiquitous form

N-1 M

y(n) = Z a(i) • - i) + b(k), - k)
i=1 k=l

that compute outputs as weighted sums of present and past inputs, and past outputs.

-However, many analog and red:tlmeSystems are better Characterized by Complex networks

of parallel, and often asynchronous, data flows and concurrent logic processing. Program-

ruing a conventional DSP chip to perform fundamental scheduling and synchronization

tasks can become intractable .......

SPROC 1 , an IC and development system, efficiently manages concurrency through

the use of dedicated control circuitry and a powerful compiler that automatically and

transparently partitions tasks among several processors. It minimizes the number of com-

ponents for simple systems, yet remains largely extensible for arbitrarily complex designs;

it is easier to program with its library of customizable building blocks; it is easier to

debug with its built-ln real-time probe; it facilitates both rapid prototyping and produc-

tion development on one system. It features full 24-bit fixed-point precision with 56-bit

accumulation resulting in a 144dB dynamic range for signal bandwidths up to 250 kHz

and handles all signal scaling automatically. The chip can be dynamically reprogrammed,

ISPROC is the registered trademark of Star Semiconductor of Warren, NJ (908) 647-9400.



3.3.2

making adaptive, self-calibrating, and field upgradeable systems easier to design. The par-

allel port supports Motorola and Intel microprocessor interface protocols. The IC can be

ganged to implement arbitrarily complex systems.

2 Chip Programming and Development Cycle

First, a signal-fiow diagram of the desired system is graphically captured by selecting,

placing, interconnecting, and parameterizing standard or customized function blocks, such

as signal generators, summers, filters, etc. Next, the compiler converts the signal-flow

diagram into executable code, allocating tasks efficiently between the available processors,

building symbol tables for simple interfacing to the code. Then, the code is downloaded

to the SPROC chip via either the development or target system. Finally, while the code

is executing , circuit nodes can be probed, parameters can be modified, and the system
observed in real time.

The SPROC advantages are fundamental: more complex, analog and real-time ap-

plications can be realized in a fraction of the time; designs can be observed in real-time

and modified on-the-fly; any design that cart be compiled is guaranteed to run on the

SPROC chip. Higher designer productivity and improved performance transiates into

_me-[0tmarket ot more er_Sve _nd " "

3 Chip Archltecture ...........

A Harvard architecture employing separate program and data busses allows concurrency

in instruction fetch, decode, execution and data manipulation. The major blocks are the

general signal processor (GSP), parallel interface (HOST), a serial interface (ACCESS),

serial interfaces for sampled data (serial PORTS), a DAC port,a glue block (GLUE),

and memory. An overview of the system architecture is shown in Figure 1.

SPROC opera_es in various configurations and modcs(_n_Master mode, the System

-- boots fr0m external _,PI_-OM. in _ mode, BPR_ responds _io aii c_al____ollei"

which is either a microprocessor or a master SPROC. In RedundancTI mode, the GSPs

--per_rmasystemsel[-te_._kttempts redundancy and reconflgur_s;i;ia=e-s);stem. Thus, while

the chip is highly integrated, it is flexible and extensible. .........

3.1 GSP

Each GSP is a 24-bit digital processor with 64 instructions and eight addressing modes.

Main blocks include program control, address generator, multiplier, ALU, and decoder.

instructions include muitipiy (MP_Y) andmuitipiySancl_accumu|ate (-MAC) tha.[ execute in

fifteen clock periods. One of up to four GSPs control both program and memory busses

on a time-multiplexed basis. As triggered, a time slice for I/O operations via HOST,

ACCESS, PORTS, or probing DAC is interjected. (see Figure 2)

= Program Bus Access



3rd NASA Symposium on VLSI Design 1991 3.3.3

SERIAL

I/0

', INPUT

DFM

DATA ' OUTPUT _ SERIAL

._ I___!o_,i__.t,,o I--
(DRAM)

DACI

| i DFM ; I OPAMP
...... • i

I

PROGRAM

DATA

(PRAM)

- -F_gure iiSysf, em._rch]_;ecture

GSP1

GSP2

GSP3

GSP4

I/0

cycle 0 cycle 1
L

P

D

P

!°1

cycle 2 cycle 3 cycle 4
r

D

D

DP

PI I
I p

Figure 2: System Timing



3.3.4

D = Data Bus Access

I/O = HOST, ACCESS, PORTS, or probing DAC Access

In Redundancy mode, each GSP executes a self-test code from internal ROM upon

power-up. If defective, the GSP is essentially held in reset and rei_aoved from tasking

operations. This enables otherwise functional parts to yield at wafer test and provide

fault-tolerance in the field. The fault coverage of this test is approximately 70%.

3.2 HOST

The host interface (HOST) is a 24-bit asynchronous bidirectional parallel port with a 64K

addressing range, and supports 8, 16, and 24 bit transfers. It typically interfaces to the

digital subsystem of the targe(cnvlronment. The GSPs can access the HOST via LOAD

and STORE instructions. Internally, SPROC has a 12-bit addressing range with 4 bits

reserved for master to slave addressing for memory-mapped devices or ganged SPROCs.

ffi

3.3 ACCESS
m

The access port (ACCESS) is a two port serial interface. It is typically used to observe

and modify the contents of internal memory while the system is operating. The input port

requires data, clock, and strobe; the output port drives a strobe and data based on the

input port clock rate. Access is time multiplexed and is transparent to internal operations. |
Full read/wrlte access is provided to any valid SPROC address. |

3.4 PORTS

The sampled data streams are supported by four serial ports configurable for data, clock,

strobe, and sync. There are two input and two output ports available. A data flow manager

(DFM) manages the concurrency oirmultlpie OSP_and data_RAM accesses. Very simply,

an input DFM writes input sample data to consecutive data RAM locations and updates a
write pointer. An output DFM will subsequently fetch out-put _sample c_ata from the data =
RAM.

3.5 GLUE ..... -

The glue block (GLUE) provides address decoding and memory mapping, mode control,

system cycle generation, and serial port timing. =.....

3.6 DAC

The digital-to-analog port (DAC) allows the probing of any node on the signal-flow dia-

gram. These nodes are represented internally as two's complement FIFO buffers in data

RAM. Hence, a node can be selected to direct its data buffer to the on-chip DAC port,

and the analog value can be observed in real-time. An internal gain register can be loaded

E



3rd NASA Symposium on VLSI Design 1991 3.3.5

to scale the digital value before outputting. The corresponding analog voltage is buffered

and driven off chip, and may be observed with an oscilloscope, spectrum analyzer, etc.

4 IC Design Methodology

4.1 Partitioning

Star Semiconductor approached HP with a prototype system breadboarded with off-the-

shelf memory and Xilinx and Actel field-programmable gate arrayed logic and a desire for

fast, integrated silicon. Chip development on the customer side was primarily in Cadence;

with VERILOG providing functional, behavioral, and logic simulation of the system and

VERIFAULT for fault analysis. TA, a static timing analyzer was used for detailed timing

optimization.

HP recommended developing additional standard cells including a recirculating flip-

flop, adder, and lookahead cells to complement its standard cell offering HP-Cmos34.

This resulted in enhanced performance, less silicon area, and a more direct mapping of the

netlist. We also developed the memories, DAC, and OSC and the task of global composition

and verification. Critical paths were simulated in SPICE, and capacitance was fed back

to the customer for final timing simulations. Clock, power, and analog routing required

manual editing.

4.2 New Standard Cell Development

Realizing the prevalent use of recirculating registers led to the incorporation of 2, 3, and

4-way multiplexers into the flip-flop to minimize area. (See table 1)

Table 1: Comparison of flip-flops, multiplexer combinations

Intrinsic Load

Library Width Delay Multiplier

uM nS nS/pF

DFFB Standard 54.6 7.8 3.4

DFFF Standard 121.8 2.6 1.5

X1RG1 New-Std 46.2 1.9 2.1

MUX2B Standard 37.8 2.9 4.8

XMUX2 New-Std 33.6 1.8 1.3

X2RG1 New-Std 71.4 i:9 2.2



3.3.6

Also, adder cells were developed including a slow 1 bit adder for the multiplier, a fast

4 bit adder, and a 4 bit carry lookahead for the address logic. (See table 2)

Table 2: Adder ceils

Intrinsic

Library Width Delay

uM nS

Load

Multiplier

nS/pF

XADD!B New-Std 63.8 4.2 2.4

XADD4 New-Std 226.8 1.8 3.6

XLOOK4H New-Std 189.0 1.6 2.9

_- r- - ...................Compos!tlon ........

-A:standard :methodology of ¢o:mpo;ing :hipswith muItipie: si_mdard-ceu and custom blocks

with theautorouting CHARP) tools 1/_73een developed. First, blocks are routed with

random port locations to determine size. Then, bl0cks are re-routed with assigned port

locations determined by the floorplan. Finally, the top Level is routed with the pads.

Developing the SPROC chip produced some enhancements to the process.

5.1 Routing Tricks

Initial block sizes were estimated using the csize program (which counts cells and adds

their areas) with estimates for routing ove-rhead: :port locations were assigned manually

taking into account the initial floorplan and stored in a file for repeated runs and easy

modification; random assignments were only made if ablock had no assignment _e. After

iteratively routing to reach an optimal block size, a frame was extracted and placed in a

dummy BDL file, which was. then combined with custom frames for global routing including

pads.

The new approach had themajor advantage of flexibility of accepting new netlists from

the designers and in experimenting with different partitions and floorplans in short order.

Any piece could be easily rerouted and incorporated as desired, including the global route.

It was a must that each of the GSPs have optimal_ and identical performance, yet

floorplan well. To accomplish this, ports were were duplicated on each side of the block,

and the blocks mirrored and routed ba_ck-to-back. To reduce the global routing, the block

consisting of two GSPs only had one set of ports. .......

Routing ALLPORTS, INTERFACE, and GLUE as a single HARP block caused a

great dispersal of the major busses. Partitioning these blocks and ports next to a central

bussing channel prove n to be rnore succ,essfu!. _ .......



3rd NASA Symposium on VLSI Design I991 3.3.7

5.2 Routing Traps

Global power routing was problematic. Power estimates were determined by SPICE and

the logic simulators. A package was selected to provide several power pads on each side.

This required additional HARP modification. Also, end cap cells were modified to supply

both power supplies to either end of the blocks, reducing IR drops by a factor of two.

HARP was given parameters to increase the sizing of power busses between the blocks,

each of which had multiple power ports. Manual editing was required to tie major power

straps together_ which run in pairs throughout the chip. The analog section was isolated

by breaking the pad ring and connecting it to dedicated power pads. Also, digital signal

lines were manuMly re-rerouted to avoid cross the analog logic.

Long global bussing of minimum width clock lines proved to have unaccepted RC wiring

delays after final routing. The clock tree had to be resimulated taking these additional

delays into account. To minimize skew, the clock drivers had been placed in the GLUE

block, with the clock ports dispersed along one edge. The lines were selectively widened

to a full contact width without penalty. It was sometimes possible to double the width

of a single line if the vias on adjacent lines were coincident, or to drop the metal layers

in parallel over long isolated runs. The clock network was reduced to a clock grid by

effectively shorting the clock branches back together at the top level.

6 Custom Modules

6.1 RAM

The data and program memories are identical 1K word by 24-bit slx-transistor static

RAMs. A custom RAM was leveraged to improve the performance, as well as reduce

area, with respect to an available RAM generator. The single-core array was developed

for simplicity as 128 rows of 192 six-transistor static RAM columns. An 8-to-1 column

multiplexer_ feeds a passive sense!nverterand non-invertlng tristate output buffer to achieve

a 16ns cycle time in an area less than 10mm 2. About 80 % of the area is consumed by the

core array. A dual clocking mode for precharge was adopted. In half-cycle mode, the timing

is determined by two edges of the system clock up to 40MHz. In internal clock mode, an

inverter delay chain times the precharge against one edge of a clock up to 50MHz. (4.75V,

85°C) With a 20ns cycle boundary, the address generation gate delays, wiring delays, and

clock skew must be less than 4ns for 50MHz operation. Both RAMS are accessed every

clock cycle and consume approximately 600roW each.

6.2 ROM

The internal ROM is 512 words by 24 bits. The core is organized as 64 rows and 192

columns. The cycle time for the ROM is less than 16ns. (4.75V, 85°C) The ROM address

space overlaps the program RAM; while the system is booting the program RAM data

drivers are disabled. The ROM artwork was logic simulated to verify the bit programming.



3.3.8

The ROM area is 0.84ram 2.

6.3 Analog Blocks

The OSC is an internal ring oscillator which minimizes component count for lower cost

systems. The oscillator drives the system cycle generator when selected. An inverter feed-

back ring was chosen for simplicity. To reduce the frequency variability, the ring feedback

is adjustable via programmable clocked-inverter taps decoded from three dedicated pins.

The frequency variability is reduced to 36% over temperature and 17% over voltage over a

tunable range of 30MHz to 80Mttz. A schmitt trigger ring driver clocks a toggle flip-flop

to insure a 50% duty cycle. In Te_t mode the oscillator is observable via a serial port. The

oscillator resides in the pad ring to isolate it from the digital environment.

The DAC was selected from HP's customizab!e analog cell library available in HP-

Cmos34. It is based on an 8-bit poly-resistor string design. Of laote are Cmos transmissions

gates used to make the resistor endpoints extendible to VDD and GND. The output swings

between these voltage references which are sourced off-chip.

The OPAMP is a general purpose opamp that has a two-stage input and class AB

output is used as a voltage follower to buffer the hlgh-impedance DAC output. The

opamp can swing rail-to-rail while driving a 3K resistive and/or 200pF capacitive load.

An external compensation capacitor allows processing in Cmos34 without an extra mask

required for linear capacitors. _ _

7 Test Methodology

A 50MHz data rate speed goal made the Schlumberger $50 the local tester of choice.

The customer contracted with TSSI (Beaverton,OR) for their software test develOpment

system (TDS) which converts captured simulation vectors to test vectors. TDS generates

$50 MDC (patterns), TEG (timing), and pingroups directly. A pattern bridge (PBridge)

essential samples the simulation responses, checking and formatting fo r S501cpnstraints.

More than 900K vectors have been generated: ..........

8 Results

First silicon was largely functional, with a major exception being the corruption of one of

the processor addressing modes. Root cause was traced to a logic inversion in a Vcrilog

model for a multiplexer. As a result, first silicon could not boot from ROM and hence run

the redundancy code for self-test and configuration.

Second silicon was a quick, metall/via/metal2 turn to correct the addressing mode,

and the silicon was fully _functional for software development and system operation up to
20Mttz.

Third sificon was a full mask turn to increase the performance of the part. Unfortu-

nately, a consequence of some of the edits introduced contention on the processor address



3rd NASA Symposium on VLSI Design i991 3.3.9

bus, limiting performance. Again, a quick turn is in the ofllng to solve the contention and

improve the performance.

The 132 pin CPGA package can be fitted with a heatsink to allow operating the chip

above 20MHz.

Investigation into porting the design into HP-Cmos26 are underway. The standard

libraries-ar--e well-suited for 50MHz system operation, and_the-redue_d_SilJeon area will

translate directly into a lower cost part and larger packaging offerings.

Conclusions

A large digital signal processing IC has been fabricated in HP-Cmos34. Routing pro-

cesses have been _mproved, and the standard cell offering enhanced with additional cells.

More accurate fou_r-parameter timing models have been developed for Verilog and other

industry simulators. New software WaS applied in the generation of a large set of test

vectors. Sharing the design with the customer was largely successful without major show-

stoppers resulting in beta-site quality systems on schedule. Efforts to port the design into

HP-Cmos26 are underway promising higher performance and more competitive systems.



3.3.10

Die Size

Routed Cells

Custom RAM

Custom ROM

Total FETs

Package

Power Supply

Operating Power

13.7mm x i4.imm

56K gates

48K bits

12K bits

540,000

600mil 132-CPGA

5.0v +/- 10%
2.5W (40MI-Iz)

Table 3: Chip Characteristics and Photomicrograph

==



N94-18
3rd NASA Symposium on VLSI Design 1991

An Extended Reed Solomon Decoder Design

J. Chen

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

P. Owsley

Advanced Hardware Architectures

Moscow, Idaho 83843

J. Purviance

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract- It has previously been shown that the Reed Solomon (RS) codes can

correct errors beyond the Singleton and Rieger Bounds with arbitrarily small

probability of a miscorrect [1]. That is an (n,k) RS code can correct more than

(n-k)/2 errors. An implementation of such an RS decoder is presented in this

paper. An existing RS decoder, the AHA4010, is utilized in this work. This

decoder is specially useful for errors which are patterned with a long burst

plus some random errors.

1 Introduction

It is well known that an (n,k) RS code can correct up to (n-k)/2 random errors. When

burst errors are involved, the error correcting ability of the RS code can be increased

beyond (n-k)/2 with arbitrarily small probability of a miscorrect [1]. Errors considered in

this paper, called composite errors, have a single burst plus random error pattern.

RS codes are powerful error correcting codes. There is a rich history of work developing

decoding algorithms for RS codes. Virtually all of the work focuses on the general case

of t unknown error locations. It is possible to extend the error correction capability of a

RS code if error location information is available from some external source. This is called

erasure decoding.

The extended decoding technique presented in this paper assumes that the locations

of the burst are known and treats them as erasures. All possible burst error positions are

given to the decoder sequentially as "guesses" to the burst error location. That is, the

burst part of the error becomes an erasure and an erasure-locator polynomial is generated

from the erasure locations for each burst location guess. By sending this erasure-locator

polynomial along with a received code word to a general purpose RS decoder, such as

AHA4010, the RS decoder will decode the received codeword. The result outputted by the



3.4.2

RS decoder is either a corrected data or a signal which indicates no correction can been
made.

The erasure-locator polynomial is generated iteratively for all possible locations during

the decoding procedure. It is possible that more than one error polynomial results from

this iterative procedure. When more than one error is obtained, the error that has higher

probability of occurrence should be chosen. It is assumed in this paper that an error with

smaller weight has higher probability of occurrence. This is true for most channels.

If the chosen error is not the true error, a miscorrect occurs. The probability of mis-

correct is a function of the size of the error that is detected and the channel statistics. It

is usually very low as shown in reference 1.

The implementation presented in this paper is based on the AHA40!0 RS decoder.

The purpose is to increase the error correction capability with very little increase on the
hardware and software.

2 Standard Decoding Description

The standard procedure for decoding the RS code is summarized below:

STEP i: Compute syndromes

Sj=v(_ i+_°-') for j=l,2,...,2t.

STEP 2: From the syndromes, form the error-location polynomial A(z), where

A(_) = (1 - _Xl)(1 - _x2) ... (1 - _x,) and Xx,X2,... and X, are
the error locations.

STEP 3: Find error location Xj (j = 1,...,i) by finding zeros of A(z).

STEP 4: Find error magnitude Yj (j = i, ...,i) by calculating first i syndrome

equati0ns,

STEP 5: Correct the error.

Two polynomials are needed during the decoding and they are:

2t

s(_) = _Esy-'
j=l

and

(1)

: - : - ..... _ Y_ ?7zT--- _:: :: Y :_ -

n(_) = S(=)A(_) (moa,=') (2)

This second equation is commonly known as the Key Equation, because solving it is

the key to decoding the RS code. After obtaining the error locations, the error magnitudes
can be found as: .......

=-



3rd NASA Symposium on VLSI Design 1991 3.4.3

For j0 = 1,

x_°-la(XT_) (3)
Y_ = A,(X;1

fl(XT')
Yt - (4)

i,(X-1)
It is now clear that the decoding procedure becomes one of finding the A and f/poly-

nomials from S(x), and then finding the location and magnitude of the errors from those

two polynomials.

When erasures are involved, an erasure-locator polynomial is created.

r(_) =[I(1 - _xp)
P

where the Xp's are the erasure locations.

The Key equation can be solved for A and f_ in several ways. One of them is Euclid's

recursive algorithm. The Euclid's recursive algorithm is briefly described below. First let

n(-,)(_)= _2t

_(°)(_) = s(_)r(_)
A¢-l)(x) = 0

A(°)(_)= r(_)

(modx 2t)

the recursive equations are

a'(_) = R..-,)cx)[_¢'-=)(_)],

or equivalently,

(5)

_(i- 2)(=) = q(1)(x)_(i-_)(x) + _(1)(x) (6)

and

i(i)(_) __. q(1)(x)i(i-1)(;_) -_- i(i-2)(z) (r)

The recursion is continued until the degree of fl is less than t + p/2 , where p is the

number of erasures.

Erasures are the errors which have been located prior to decoding. Utilizing this infor-

mation will improve the error correction capability of the decoder. Since the burst is a big

part of a composite error, a burst erasure will make the error correction capability much

greater. This idea leads to the following approach:

STEP 1 Set stop conditions, the maximum iteration time N and n=0.

STEP 2 Assume the burst begins at location a and n=n+l.



3.4.4

>l buffer

data input >1

erasure- 1 ocator

polynomial
gcn¢ r a tor

[_ r=255
flag

AHA4010

-/-_w input >

cot rected
)data

correct

found

e r r or
choice

unit

Figure i: Block Diagram

STEP 3 Decode the error with the burst as erasures.

STEP 4 If the result satisfies the stop conditions or nhN, go to STEP 5. Else, increase

the beginning location of the burst, go to STEP 2. _ .....

STEP 5-Report the result.' - ::

In other words, the decoding method, used by the extended decoder, is to guess where

the burst part of the error is and try to decode it.

3 Extended Decoder Design

The extended RS decoder has an AHA4010 decoder at its center. An erasure-locator poly-

nomial generator, an error choice unit and a data buffer are attached to the AHA41YI0

decoder. The top level block diagram of this extended decoder is shown in Figure !.

The erasure-locator polynomial generator generates r(z). r(z) could be generated for

every possible error location. However, this may not be necessary. For example, let ei'ror,

e(z), be defined as:

: = :: : : . :E

ex( ) = + + + + (8)
The error, e(z), can be interpreteci as-

l. e(Z) = 0;g -1 "3t- St 6 + O_9_g 1 "-_ a0Z 3 3L Ot4Z 13

A burst length of 5 (Oz -i + a _ + ctgz i + asz _ + a°z s ) and one random error (a4zi3).

2. e(z) = Oz -2 + Oz -l + a 8 + a°z l + asz 2 + z 3 + a4z _3.

A burst length of 5 (0z -2 + 0z -1 + a s + a_z _ + aSz _ ) and two rand0m e_fbrs



3rd NASA Symposium on VLSI Deslgn 1991 3.4.5

output ,_

1

_- l__ L | ;

incrcas L l cont r ol. Jr:0 --_ 255

input

Figure 2: Erasure-locator Polynomial Generator

input

data

corrected

data

CONTROLS:

Tl= Po + P1*CORRECT*(C*I)'

T2-- PI*CORRECT*(C= 1) + P2*(CA > CB),

T3= Po + Pl *CORRECT*(C=I) + P2 *(CA>CB)'

T4= Po + Pl *CORRECT*(C:I:I)"

_foun CA>CB

d

corrected
dafa

,I

Figure 3: Error Choice Unit



3.4.6

O_NAL PA_,. ;S

OF POOR QUALITY

4. e(_) = 0_-' + _6 + _,_1 + _6_ + _0_3+ 0_4).

A burst i_g_i_ o£ $ (0_-_ + a _ + _%' + _%_ 4 _%3 + 0x4 ) and _&o r£_iaom error

A RS code with the abiIit_. Of correcting a burst Of length 5 and 2 random errors

will correc_ _ the errors above, using this logic, r(x) can be generated every m error

location bits. The user must decide the value of m under the considerati0n Of the number

o]_ iteration tii-hbS and the size of the correctable error.

Meanwhile, the error choice unit stores the dat_. corrected by the AHA4010 decoder

and reverses it back to the error polynomial. If the size of the error is less than t' (i.e.

This error has the highest probability of occurrence), the error choice unit interrupts the

_terahon a.nd outi_uts the corrected data. Otherwise the iteration continues, if more titan

_5ne error is found, the error choice uili_ compares these errors and the smallest error is

cimsen (It is assumed tha_ the sm_iies_ error has the highest probability of occurrence).

4 Erasure-Locator P01ynomial Generfit0r ._-,:

/_ssume the recexve_ cocle wor?s _ave a composite error patterne? wl}_. x ranTdom errors
r-l-1 r4_ r+v

is from 0 to 255. The erasure-locator polynomial, I_(:_), has a form:

: II0 +

= a_'(F_z _ + I'_z _-1 + ... + F._ + a -_)

where l"1,1_,andF_ are constant and r is form 1 to 255.

For each received code word, the corresponding decoding process is performed N/m

times With N/m different F(x), where N is the length of the RS code and m is the bits that

F(z) skii_S. At each end of the decoding process, a DONE signal iS sen_ to the era_ure-

locator polynomial generator. The DONE signal chrisms erasures :to shlft t0 t.he rigll_

bits. Therefore, a new F(_) is generated. This operation repeats Until a FOUND signal is

received or r > 255.



3rd NASA Symposium on VLSI Design 1991 3.4.7

The erasure-locator polynomial generator is depicted in Figure 2. The coefficients of

this polynomial, Fja pr (j from 0 to v), are not constant. Fiat" multiply by a whenever

INCREASE CONTROL (i.e. DONE signal) is assertive.

The operations can be described in a register transfer language where each Pi is a

control state that defines the data transfers that take place when Pi is active. A register

transfer language description for the erasure-locator polynomial generator is shown below:

• P0 : r=0, if (30=1, then go to P1.

* P1 : if FOUND=I or r=255, then go to P0 , else Y0 = a",F1 = YlaPr,Y2 =

F2a _,...,Fp = Fpa v" and r = r + 1.

• : r(.) = 1-[(1 - xa,) , if DONE=l, go to P_ .

5 Error Choice Unit

During the decoding iteration, it is possible that more than one error results. The error

with the highest probability of occurrence should be chosen. It is assumed that will be the

smallest error. The diagram of the error choice unit is shown in Figure 3.

The first data corrected by the AHA4010 decoder is stored in register A, its correspond-

ing error is also calculated and the size of the error is stored in CA. If the size of the error

is less than t', the CMP asserts the FOUND signal and outputs the data in register A.

The decoding process otherwise continues. The second corrected data is stored in register

B, the size of the second error is stored in CB. The CMP compares the values of CA and

CB. If CA > CB, A is replaced by B and CA is replaced by CB. If the value of CB is less

than t', the CMP asserts the FOUND signal and outputs the data in register A. If CA

CB, nothing changes. This comparison is performed every time a corrected data is output

from the AHA4010 decoder. It guarantees that the register A always has the data which

is corrected from the smallest error.

A signal from the erasure-locator polynomial generator tells the error choice unit that

the iteration is finished. The data in register A is the output.

A register transfer language description for the error choice unit is:

• P0: 0--,A,0---,B,I_C, FFH--.CB,_f GO--1, gotoP,. ......

• P, : if CA < t' or CB < t' or FLAG=I (i.e. r=255), output data, set FOUND=l,

go to P0 •

• if CORRECT=I & C=I, correctedData ---* A, size (correctedData) _ CA, c = c+l;

• if CORRECT=I & C :_ 1, correctedData ---, B, size (correctedData) --+ CB;

• P2:ifCA>CB,B--+A, CB_CA, gotoP1.

CORRECT is a signal from the AHA4010 decoder which indicates a correction has

or has not been made. C is a counter. It counts the number of correction times for one

received code word.



3.4.8

6 An Example

Consider a (255,235) RS code over GF(2 s) defined by the primitive polynomial p(z) =

x s + z r + z _ + z 1 + 1 with the primitive element a = z. This code can normally correct

ten random errors. Assume received errors have a burst of length 8 and 5 random errors.

After considering the number of iteration times and the slze of the correctable error, let's

set the m=4 and t'=ll.

SOLUTION:

The received polynomial is:

v(x) = x 14+ a3x is + ct2°°z 16+ asz 17+ ct4°zls -F ct23z 19+ aez 2° + ac21-4-ots4xls3 + otTlz 19s + ax 2zz.

(0)
When the extended RS decoder is turned on, the erasure-locator polynomial is:

8

r(_) = Ii(: + _i). (:0)
j=l

This l"(z) is sent to the AttA40i0 decoder, the FOUND signal is zero. Multiply the

coefficients of r(_) by _32(i.e. _°"= _,_ = _32).The erasure-locator polynomial becomes:

r(_) = 1-[(1+ _1_,)
./=1

process performs repeatedly until the FOUND signal is one. That glves the corrected datit_

The corresponding erasure-locator polynomial is:

T(:c) = i_(1 + ::aJa 1_)
j=i

and the corresponding error polynomial is:

(il)

7 summary
....................................

An extended RS decoder has been presented in this paper. With two extra circuits, the

error correction capability of a generkl pUrpose_.gdecoder can be _ncreased: This design

shows a way to improve the error correction capab_llty of existing RS decoderi. :



3rd NASA Symposium on VLSI Design 1991 3.4.9

References

[1] P. Owsley, "Burst Error Correction Extensions for Reed Solomon Codes," PH.D Dis-

sertation, E.E. Dept. University of Idaho, July 1988.

[2] W. W. Peterson, "Encoding and Error-Correction Procedures for the Bose-Chaudhuri

Codes," IEEE Trans. Inf. Theor. IT-6 (1960), pp. 459-470.

[3] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley Publishing

Company, 1983.





3rd NASA Symposium on VLSI Design 1991

N94-18349
3.5.1

An Improved Distributed Arithmetic Architecture

X. Guo and D. W. Lynn

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract- Speed requirements have been, and will continue to be a major con-

sideration in the design of hardware to implement digital signal processing

functions llke digital filters and transforms llke the DFT and DCT. The con-

ventional approach is to increase speed by adding hardware and increasing

chip area. The real challenge is to save chip area while still maintaining high

speed performance. The approach we propose is based on the distributed

arithmetic implementation (DA) of digital filters. The improvement is based

on two observations. Firstly_ a single memory element can replace several

identical memory elements in a fully parallel DA implementation. Secondly_

truncation or rounding may be introduced into the computation at strategic

points without increasing error unduly. Both of these approaches can be used

to attain area savings without impairing speed of operation.

1 Introduction

Finding the inner product between two vectors is an operation that commonly arises in sig-

nal processing as well as in general data processing. Digital convolution and correlation are

directly described as inner products. Other operations such as the discrete Fourier trans-

form and other common transforms can be implemented as a sequence of inner products.

Consider the inner product
K

y = _., Akzk (1)
k=l

In the case of a FIR digital filter, Ak represents a set of fixed weights, and zk represents

the current and past K - 1 filter inputs. The inner product can be implemented directly

by using a single multiplier and an accumulator in a serial one product at a time manner,

as in Figure 1, or in a fully parallel manner by using K multipliers and a multi-input adder

or adder tree, as in Figure 2. Obviously, the fully parallel architecture will always be faster

than the serial approach.

The distributed arithmetic (DA) approach to computing the inner product was devel-

oped in the early seventies [1,2,3,4,5,6,7,8]. In this approach, combinations of the Ak are

precomputed and stored in memory. Input data are used to identify which memory words

are to be fetched, shifted and added to produce the final result. Without loss of generality,

This research was supported in part by NASA under grant NAGW-1406.



8.5.2

x k

Y

Figure 1: Multlpller-Accumulator Implementation

1 AK :: :

Figure 9.. _iiy Parallel Direct imp|ementatio_ : :: : ::

first assume that the z_ are scaled such that I_k[ 4 i: in tWO'S compiement _r_

= (2)

where the bk,,, represent the individual bi_s in _k with bk0 the sign bit. Substituting (2)

into (1) and rearranging the order of Summation gives

y= Akb_,_ 2-"- Akbko (3)
rn=l k=l

Since the bits /_k,_ are either 0 or i, the term _k=,K A_bk,_ can be p_put_ f0r

2 K possible combinations of bk,,. These Values are then stored in a RO_CIor fiA._. T-he
actual combinations of bk,n, arising out of the inPut data, are used to address one of tli_

precompu_d terms storecl {n the memory. Note that these combinations are formed by

selecting the ruth bit from each of the K M-bit input words. The ruth term so addressed

is then shifted by m bits _o tIie _-gh_ before _eing addec[ _o the:-0th_Mterms. Ti_e o_y

exception to this is when m = 0. in this case, Which corresponds to using the sign bits 0f

the input data to form the address, the addressed term is subtracted from the other terms.

As with the direct implementation of the inner product, there are two approaches tr_

implementing DA.. The inner product can be computed by using only one memory and g

single accumulator as shown in Figure 3, or in a fully parallel manner by using M memories,

F

z

_



3rd NASA Symposium on VLSI Design 1991 3.5.3

Figure 3: Single Memory DA Implementation

each with identical contents, as shown in Figure 4. Again, the fully parallel approach will

always be the fastest. In Figure 4, we note that the shifting is actually accomplished by

connecting the memory outputs to appropriate positions on a multi-input adder.

Comparing Figures 4 and 2 is instructive. We note that where the input data words

are M bits wide, M memories are always used in the DA implementation, independent

of K, the number of multiplies in the inner product. However, each memory must store

2 K terms. So, increasing K will increase the required size of the memories. Also, as K

increases, the number of stored bits per term must increase in order to maintain accuracy.

The direct implementation, by comparison, uses K multipliers. As M increases, the width

and depth x of the multipliers must increase to preserve accuracy. Thus, depending on

the word size, number of products, and required accuracy, one approach may have size

advantages over the other.

In terms of speed, DA does have one clear advantage over the direct implementation.

Increasing the accuracy of the inner product by increasing the number of bits in the

input data words and in the coefficients will not degrade the speed performance of a DA

implementation. The number of memories and the width of each will increase, but the

number of stored terms in each memory will not. In a direct implementation, however,

not only the width of the multipliers increase, but so will their depth resulting in slower

performance. Increasing K does not decrease the speed of the multipliers, but it will

increase the depth of the adder tree in the direct implementation resulting in some loss of

performance. In a DA implementation, increasing K will slow down the memories, but it

does not increase the depth of the adder tree.

While the structure of the fully parallel DA implementation is very regular and hence

attractive for VLSI implementation, it appears to be very inefficient in terms of its use

of space. That is, for each inner product computed, only one of the 2 K terms stored in

each memory is used. Further, the contents of each of the M memories is identical Our

1This assumes that the width of the coefficients also increases proportional to M.



3.5.4

ix, I I ooo I

bl0 _ ........... bxcl-O

_ y

.... Figur e 4.F_y paxallel DAImplementatign

.... firs-t observation about how the fully parade1 DA architecture may be improved involves

replacing the M memories with just one memory unit that provides M data access paths.

2 An Improved DA Architecture

A ROM, using one transistor per storage bit, is shown in Figure 5. The stored bits axe

zero or one depending on whether the dr_n of the associated transistor is connected to

the data line or not. Note that the address decoder and the data llne sense amplifiers are

not shown. Not counting these components, the number of transistors required for the

memo_es_n a ROM based fully 10arallel DA implementatlon iS

nt = M(b2 I_ + 2 K + b) (4)

where b represents the number of bits stored in each word of the memory. Next, consider

Figure 6 which represents one plane of a M-way multi-access memory. Each plane S_bres

one word and 2 g planes together make up the complete memory unit as shown in Figure

7. Each plane has M sets of b control transistors that are used to route the stored Word to

the app-r0pfiate output _register. Eachset ofb-c0ntr0i transistors is contro_ed by a single

control ilne. The data bits associated with control line rn in each plane are connected to

a bus which connects with output register m. Which of_the 2 _ control lines is asserted

is determined by address decoder m. Since this circuit effectively addresses the output

registers instead of the stored words, there is no need for address lines for the stored words

themselves. Further, a transistor is not required for each stored bit. A zero is stored simply

with a shorted llne, a one with an open. The control transistors assume the function of the



3rd NASA Symposium on VLSI Design 1991 3.5.5

addressline1

I

__L

stored0 "hk,_

addressline2

addressline2K
_L_

preeharg--ei_ 2""-'=

"O

storedI

o

o

o

Q,} Q_

precharge

Figure 5: ROM Architecture

storage transistorsin the ROM architecture,and provide a path between every stored word

in the memory unit and every output register.The totalnumber of transistorsrequired to

implement the memory unit, again excluding address decoders and output registersis

n, = Mb2 g + b2 K + 2 g (5)

Note that both approaches use M K to 2 K decoders and identically sized adder trees. The

ratio of the number of transistors in the storage sections of the Multi-Access memory unit

and the memories in a fully parallel DA architecture give an estimate of the area savings

potential presented by one approach over the other. Dividing (5) by (4) gives

Mb2 K + b2K + 2 K

Ra,ea = Mb2K + M2 K -4- Mb

Mb2 K + (b + 1)2 K

Mb(2 k + 1) + M2 K
(6)

Since b will usually be greater than M, Ra,,a > 1. That is, the multi-access memory

architecture presents no area savings, despite the fact it replaces M copies of each stored



3.5.6

precharge

control line I

.F
control l_e 2 i] -''_

stored 0

control lineM l_'- lY

VDD

J • • g

stored I

I

'"_.__ data bit.I

data bit b

I data bit I

data bit b

j-
I___ data bit 1
l

data bit b

bus I

bus 2

_=_= =

bus M

Figure 6: Memory Unit Plane

word with just one copy. This is because the expense of bus controls erases the savings o5

memory transistors.In fact the number of transistors associated w_th stored bits in the

fullyp-a_ra_elimplemcntatlon is Mb2/r. This is aiso the number of bus control transistors

in the multi-access memory.-However, for memory architectures where there ismore tllan

one transistorper stored bit,the savings in storage transistorswillnot be absorbed by bu's

control transistors.To see this,consider the case that 4 transistor staticRAM ccil_are

used as memory eie-ments, static RAM-may be required in cases where the _nner _t
............... ]--- - -- _ __ __-. _ .... _,_= 7_;_ ........ ._-_ .

is to be configurable, m the sense that the coefficxents may be change_ irrom hme to time,

requiring the memory contents to be rewritten. The conventional static RAM architecture._ _ - _= _ __- _._= - _ [

is shown in Figure 8 and one plane of the m_dt-i-access memory architecture is shown in

Figure 9 .... - ..... - _ - _- - =.... - ............ -:

A fully parallel implementation of DA using M static RAMs of the type shown in

Figure 8 would use 4Mb2 K transistors and Mb2 K cell select transistors. The static RAM

multi-access memory unit would use 462 K transistors for storage and Mb2 g bus control

transistors. Thus, when static RAM cells are used,

R,,,_ = (M + 4)b2 K _ M + 4 (7)
5Mb2 K 5M

Here there will be an area savings so long as M (the number of bits in the input data words

and the number of memory units in the fully parallel DA implementation) is greater then 1.



3rd NASA Symposium on VLSI Design 1991 3.5.7

plane 8 K

decoder U//

plane Z

plane 1

Dr_

bus i

bus 2

bus M

Figure 7: Multi-Access Memory Unit

If M = 8, Ro,, = .30. Thus the area savings can be significant. These observations have

been made in the context that the number of transistors corresponds to area requirements.

The same results hold whenever the area required for the storage cell (be it transistor based

or not) requires more area to implement than do bus control transistors. Again, it must be

noted that while the area required for address decoders and the adder tree are the same for

both implementations, these requirements are not included in the Ror,a computation. So,

Rat,, only reflects the savings potential in the storage section of the implementation. To

the degree that the storage section dominates the other elements of the implementation this

may translate into significant savings. Not only do the other elements need to be included

in the computations, but an actual VLSI layout of a multi-access memory based DA circuit

needs to be attempted to make sure that the connection complexity of the multi-access

memory unit does not overwhelm what appears to be a significant area savings potential

in the case of static RAM memory cells.

3 Truncation and Rounding

Once each term is fetched from the memory, they are shifted and added to form the final

result. This operation is diagramed in Figure 10. If each memory in a fully parallel imple-

mentation stores terms that are b bits wide, then the resulting inner product will occupy



3.5.8

address line 1

address line 2K

_L_

i

_1_

z'
i

3_

c_

Figure 8: Static RAM

_L_

=

_u

I

at most M + b blts. 2 Suppose, however, that the product only needs to be determined to

an accuracy of f significant bits. In this case it may be possible to truncate or round the

individual terms before adding. Doing so would not only reduce the amount of hardware

required in the adder tree, but would also reduce the size of some of the memories. This

is Obvious in the case of the fully par_e! DA implementation and, as we will see later, it

is also true for the multi-access memory unit based implementation. First let us consider

what the impact of truncating or rounding will be on the accuracy of the final result.

...... Truncating -the;ndTvidual terms and _ discara;ng bits tha( fall qn-co]umn f q- e and _to

the right (as shown in Figure 10) will give a maximum worst case error of

Eft = 2-'((M + b - (f + e)) - 1 + 2 -(M+_-(t+'))) :(8)

where we have normalized the result so that the binary point falls just to the left of column

f.s The worst case truncation error is calculated by considering that all the truncated bits

are ones.

When we round the [ndilvidual terms and then discard bits that fall in column f -_ e

there axe two worst case error situations. If the bits in column f + e axe all ones, and

bits to the right are zeros, in this case the error is

E,u, = 2-('+1)(M + b - (f + e)) (9)

2This can be shown by temporarily treating the terms as whole integers and assuming that all M terms

take on the maximum value (2 b - 1). The final sum will then be (2* - 1) * (2 M - 1) which can be written

as ((2 b+M - 1) - (2 M - 1) - 2b) + 1. When written this way and assuming M < b it is easy to see t h.a-t _t_he

result occupies at most M + b bits.

aWe also need f _>b.

i

=

Z

B



3rd NASA Symposium on YLSI Design 1991 3.5.9

control line 1

control line M

i i

v v: -_cellZ:

• • a

iii

___ cell b:

data bit b

data bit b

bus 1

bus M

Figure 9: Static RAM Multi-Access Memory Plane

If the bits in column f + e are zeros and all the bits to the right are ones, the error is

E,._b = 2-{'+l)((M + b- (f + e + 1))- 1 + 2 -(M+b-(t+'+'))) (10)

After the individual terms have been truncated or rounded to f -{-e bits, the final sum

is computed and then either truncated or rounded to f bits. This second truncation or

rounding will add to the total error. In the case of truncation, the worst case error will be

Et! = 1 - 2 -('-') (11)

In the case of rounding, the additional worst case errors are

E,jo=2-' (12)
E,.p, --- 2 -1 - 2 -{e-l}

Noting that E,t.. > E,t_, and E, to > E, tb, wc will use E,t_ and E,.Io when referring to

rounding. There arc four possible approaches to arriving at the final result depending on

which of truncation or rounding is applied to the individual terms and which is applied

to the final sum. The four possibilities are summarized in Figure 11. From the graph, we

see that as few as five or six extra bits beyond f are required in order to arrive at errors

that are very near what we would expect if we retained all the bits in the individual terms,



3.5.10

[
I

I

b bit terms

I
I

[ final sum

I
1

I
0

retain f bits

I
I

__J M terms

+e M+b-1

discard t bits

Figure 10: The Final Sum

?

formed the sum and rounded or truncated the result to f bits. We also note that this is true

independent of whether the individual terms are first truncated or rounded. When e < 4,

the error resulting from rounding is similar to the error resulting from truncating one less

bit. These observa.fi0ns-suggest that there is not a great deai to be gained by rounding

individual terms over truncating them. In the case of a fully parallel DA implementation,

the rounding of individual terms can be precomputed and only the rounded terms stored,

so there is no cost in doing so. However in themulti-access memory based implementation,

rounding of individual terms would have to be performed upon access. As we shall see

shortly , the area requirement_ Of the m__ulti:access memory for rounding wi_ be the same

for a memory the truncates one less bit. This, coupled with the above observations on

error, indicate that rounding individual terms does not provide a very great advantage

over truncation in the multi-access memory.

4 Implementing Truncation and Rounding

First we consider the transistor cost of a ROM based fully parallel DA implementation.

From Figure 10 we see that if we desire to compute the final sum to f + e bits, we will need

(M - t) ROMs storing b bit words, and t ROMs that each store one bit less in succession

wheret = (M + b) - (f + e). Note that for consistency, t < b andt < M. Ift > b, M

should be reduced and if t > M, b should be reduced. Now, re_'erring to Figure 5_see

that for each bittruncated, :9._ + 1 transistors=are saved, since __ i i = t(t -4- 1)/2, the

cost of the implementation is _ _ : =

nt = M(b2 K + 2 x + b) t(t + 1)2 (2K+ 1) (13)



3rd NASA Symposium on VLSI Design 1991 3.5.11

M=16, b=32, f=32

8 I I I I I I I

5
0 round terms, round final

',{ y [] trunc terms, round final
N Z_\ Q A round terms, trunc final

0 trunc terms, trunc final

0 I I I I l t i
0 2 4 6 8 10 12 14 16

e (number of extra bits)

Figure 11: Errors from Truncation and Rounding

Again, K to 2 K decoders are required for all M RaMs. We also note that this equation

applies equally well to both truncation and rounding of individual terms. Next we consider

the transistor cost of the multi-access RaM based implementation. We note that while

each stored term must have the fun b bits, the width of the last t data paths decreases by

one bit for each path. This is shown in Figure 12 where the storage cells are implemented

by connections (or the lack thereof) to ground through a precharge transistor as in Figure

7. Thus, we save t(t + 1)/2 bus control transistors in each plane so, the overall cost of the

implementation is

nt = Mb2 K + b2 K 4- 2 K t(t + 1)2 K (14)
2

Comparing the savings of the two approaches, we see, not surprisingly, that the multi-

access RaM continues to loose ground against the fully parallel implementation. The

disadvantage is further amplified when we consider applying rounding to individual terms.

In the fully parallel approach, the rounding is precomputed, but in the multi-access ap-

proach the rounding must be computed on-line. An extra bit in each of the terms to be

rounded is required. If the bit is a one, the one is to be added to the next more significant

bit. This could be achieved by routing the extra bit to an appropriate place in the adder

tree. Another approach might be to truncate so that a final sum of f + e + 1 bits is

computed, resulting in an equivalent error. In either case, an extra bit would be needed

for each of the M data paths in each of the 2 K planes.

Extending the comparison to the use of static RAM, from Figures 8 and 10, we see that

truncating or rounding so that the final sum is computed to f + e bits would save (5t(t +



3.5.12

controlline1 i_-V'-

controllineM-t

controllineM [1 _-"

cell2'

_ . [_f-
g i @

e

cellb l

data bit 1

data bitb

B

data bit l

data bitb

data bitb-1

,- 'data bitb

bus I

bus M-t

bus M

Figure 12: Multi-access Plane with Truncation

1)/2)2r--t-ran_stors in the fully para_ei-lmplementation. Letting the storage element_

Figure 12 be the 4 transistor cells usedln F_gureg, wesee that the savings from truncation

in the multi-access RAM based implementation is the same as it was in the multi-access

ROM, namely 2Kt(t + 1)/2. Not surprisingly, we find that the fully parallel RAM based

implementation benefits more from truncation than does the multi-access based-P_AM

architecture. We note however, that it still possesses a significant advantage. The ratio of
the number of transistors becomes

Ra,ea = (M + 4)b = t(t + 1)/2
5(Mb- t(t + 1)//2) (15)

With t = M = 8 and b - 16, Ra,ea = 0.34 as compared to the .30 ratio that arises if t - O.

We also note that the reduced number of bus control transistors and reduced bus widths

reduces the connection complexity of the multi-access architecture.

5 Conclusions

e ¢ • ' _ * -
W, have shown that tl_emultl-access archltecture reqmres slgmficantly less area than a

fuUy parallel architecture when the number of transistorsper stored bit is greater than

one, as it will be when staticRAM cellsare employed. Since this observation is based

on the assumpt_on_t_at the transistorsused for sto_a_ axe_t[_esame s_ze as ti_os_uscd

Z

E

f



3rd NASA Symposium on VLSI Design 199I 3.5.13

for bus control, we can say more abstractly that the multi-access architecture will save

space whenever the area required to implement each storage cell is greater than the area

required to implement a bus control or routing transistor. The savings estimates do not

include the cost of decoders and the cost of the adder tree (which will be the same in both

cases). The area requirements of these elements must be added in so we can truly asses

the area savings advantage of our approach. Both approaches appear to be fairly regular,

both lending themselves well to VLSI implementation. Again this observation is made

independently of the implementation of the decoders and the adder tree. The connection

complexity between these elements in both architectures also needs to be considered. In

short, a VLSI layout of both architectures needs to be done in order to be able to accurately

compare the two.

We have also presented the errors associated with truncating or rounding individual

terms and the area savings that can result in both architectures from doing so. These

errors need to be reconsidered, placing them in the overall context of the inner product.

In particular we have not considered what b should be given M and K.

References

[1] A. Peled and B. Liu, "A New Approach to the Realization of Nonreeursive Digital

Filters," IEEE Trans. Audio and Electroacoustics, Vol. AU-21, No.6, pp. 477-485,

December 1973.

[2] S. Zohar, "New Hardware Realization of Non-recursive Digital Filters," IEEE Trans.

on Computers, Vol. C-22, pp. 328-338, April 1973.

[3] A. Peled and B. Liu, "A New Hardware Realization of Digital Filters," IEEE Trans.

on A.S.S.P., Vol. ASSP-22, pp. 456-462, December, 1974.

[4] C.S. Burrus, "Digital Filter Structures Described by Distributed Arithmetic," IEEE

Trans. on Circuits and Systems, Vol. CAS-24, No.12, pp. 674-680, December, 1977.

[5] F.J. Taylor, "An Analysis of the Distributed Arithmetic Digital Filter," IEEE Trans.

on A.S.S.P., Vol. ASSP-34, No.5, pp. 1165-1170, October 1986.

[6] M. Hatamian, et al., "Parallel Bit-Level Pipelined VLSI Designs for High-Speed Signal

Processing," Proceedings of IEEE, Vol.75, No.9, pp.1192-1202, September 1987.

[7] S. Zohar, "A VLSI Implementation of a Correlator/Digital Filter Based on Distributed

Arithmetic," IEEE Trans. on A.S.S.P., Vol. ASSP-37, No.l, pp. 156-160, January

1989.

[8] S.A. White, "Applications of Distributed Arithmetic to Digital Signal Processing: A

Tutorial Review," IEEE ASSP Magazine, Vol.6, No.3, pp. 4-19, July 1989.

[9] Xiaoyi Guo, "An Improvement on Distributed Arithmetic Implementation of High

Speed Digital Filters", Masters Thesis, University of Idaho, May 1991.



22

2

• :- . ± ....

|

=

g

=
B

m



3rd NASA Symposium on VLSI Design 1991

N94-13350
4.1.1

An Analog Retina Model for Detecting Dim Moving
Objects Against a Bright Moving Background

R. M. Searfus, M. E. Colvin, F. H. Eeckman,

J. L. Teeters, and T. S. Axelrod

Lawrence Livermore National Laboratory

Livermore, California 94550

Abstract - We are interested in applications that require the ability to track

a dim target against a bright_ moving background. Since the target signal

will be less than or comparable to the variations in the background signal

intensity_ sophisticated techniques must be employed to detect the target. We

present an analog retina model that adapts to the motion of the background

in order to enhance targets that have a velocity difference with respect to the

background. Computer simulation results and our preliminary concept of an

analog t_Z_ focal plane implementation are also presented.

1 Introduction

We are interested in air and spaceborne surveillance applications that require real-time

target detection and tracking against a moving earth background. The scene observed

from the surveillance platform may range from a dark earth to bright sunlit clouds and

terrain, and the variation in the intensity of a single scene may span several orders of

magnitude. As long as the target intensity is sufficiently larger than the variations in

the background intensity, simple image processing techniques such as spatial filtering and

thresholding can produce satisfactory results; however, for the case of a dim target against

a bright, moving background, simple processing methods may produce unacceptable levels

of false detections or may completely fall to detect the target.

One approach for reliably detecting and tracking targets under these conditions is to

subtract the moving background from the scene, leaving only those objects that have a

different velocity than the background. Since the background motion may not be known a

priori and may change throughout the course of observation, it is important for the sensor

to have the capability of adapting to changes in the background velocity. The number of

detector signals that must be simultaneously processed 1 imposes a computational demand

that exceeds the capability of conventional computer hardware. Furthermore, for a space

environment, low-power consumption and compact size are extremely important design

constraints.

In this paper, we present a model for an analog retina that adapts to the motion "

of the background and enhances objects having a velocity difference with respect to the

background. A computer simulation of this model is described, and our experience of

using the simulation on real and synthetic data is discussed. We also describe a real-

time implementation of our model on a PIPE image processing computer, and present a

1A minimum detector array of 128x128 pixels is required; an array of 512x512 pixels is desired.



4.1.2

mapping of our model to a "Z" focal plane (Z-plane) technology [?] implementation that

addresses the real-time processing requirements and the design constraints for space-based
operations.

2 An Analog Retina-like Model

Very sensitive, high-resolution electronic imaging systems exist with capabilities that sur:

pass those of any biological system. However, current electronic imaging systems do not

possess the robustness of a biological system when confronted with a diverse environment,

and also lack the real-time processing power of even the simplest vertebrate retina. For

the relatively simple task of identifying and tracldng moving objects, man-made devices

fall short of the biological systems they are designed to mimic: .................

The goal of our research effort _as been to extract and understand the engineering

principles underlying natural vision systems and to apply that knowledge to designing

better image processing hardware. We are focusing on the retina because research ha_

shown that some animals possess enough image processing "wetware" to detect and track

moving objects using only a thin layer of cells at the back of the eyecup (the retina).

The vertebrate retina is more than just a simple light sensor. It is a complex _efisor-

processor device that transforms the incoming light signal before transmitting it to the

visual cortex and other subcorticd regions. The retina's full range of functions are presently

unknown, but it is clearly involved in dynamic range adjustments, edge enhancement, color

preprocessing, and change detection. The retina has five main ceU types (photorecept0rs,

horizontal cells, bipolar cells, amacri-ne cells, and gang[ion cells) and _WO Synaptic |ayeS-s,

the inner and outer plexiform layers, where the processes of these retinal cells interact

to produce nontrivai signal transformations. Theouter plexiform layer handles spatid

processing and dynamic range adjustments, while the inner plexiform iayer-ls involved in

change detection and temporal processing. A detailed description of the anatomy and

physiology of the vertebrate retina can be found in Dowling [?]. We must emphasize that

we are not trying to duplicate the biological retina. Rather we have borrowed several

design principles from the retina (especially the outer plexiform layer) to solve a specific

image processing probl_____em_;._: ::_: :=i_: _...... :__= .......... _: _:;}::_ : _: : ...... ..... __ _: i_: _

: :: ourmodei:co_s=_s of three=major Components as shown in the block diagram of Fig-

ure 1: an artificial retina, augmented by a background removal network, and an image_

enhancement network. Processing throughout the model is performed on analog data,

eliminating the need of analog-to-digital and digital-to-analog con vers_i_onn...... -: ::: :

The artificial retina is based on our previous work involving the use of a retina-like

model for detecting moving objects against a fixed background [?], and consists of two

parts: a photode{ector array analogous to phot0receptors found _n biological vision sys-

tems; and an image conditioning network that mimics the function of horizontal and bipolar

cells in the biological retina. The photodetector array is a mosaic of photosensitive devices

that convert fight into an electrical signal. Unlike a CCD which produces discrete frames of

time-averaged data, the photodetector array produces a continuous, time-varying image.

m

z



3rd NASA Symposium on VLSI Design 1991 4.1.3

Photodetector Array

,illa_m 1

I
Image [

Conditioning

Network

Artificial Retina e.-- m m

[ "-

I
I
I

Image

Enhancement

Network

I-
Image

Shifter

[,.i

Background Res_ovalNetwork

Figure 1: This block diagram shows the three major components of our model: an artificial

retina; a background removal network; and an image enhancement network. The artificial

retina converts light into a continuous, time-varying image, and conditions this image

with amplification and spatial-temporal noise reduction. The background is removed by

network layers which subtract a shifted, time-delayed image from the conditioned image,

and the result is used to enhance the output of the artificial retina. Further analog and

digital processing can be performed on the enhanced image to meet application-specific

requirements.



4.1.4

The output of the photodetector array is amplified by the image conditioning network,

which also provides temporal and spatial noise reduction.

The background is subtracted from the artificial retina output by the background re-

moval network. To perform this operation, output from the artificial retina is first delayed

by a low-pass temporal filter (depending on the application, this delay can either be fixed

or variable). The delayed image is then spatially shifted by a neural network layer. The

adjustable weights of this image-shifting network determine the total spatial displacement.

A difference image is then formed by subtracting the delayed, shifted image from the arti-

ficial retina output. If the weights of the image-shifting network are adjusted correctly, the

background in the image shifter output will be aligned with the background in the artificial

retina output, and the backgrounds will cancel in the difference. Objects having a velocity

difference with respect to the background will leave a negative trace at the trailing end of

the object and a positive trace at the leading end.

An error feedback network modifies the weights of the image-shifting network to achieve

and maintain background alignment. The drift error is determined by rectifying the dif-

ference image and summing the rectified values (1).

IEI _ = f_ (I(¢,t) - I(_ + offse_,t + delay)) 2 (1)
rnaae

As the backgrounds are shifted towards alignment, the error decreases; as the back-

grounds are s]_fted away _rom _gnment, the error increases, in a one-d_menslonal ca_e,
I • *

the derivative of the error with respectto the sp_ataa] shxft will determine the required

shift direction necessary to bring the backgrounds into alignment (see Figure 2). For a

two-dimensional case, the gradient of the error with respect to the X/Y spatial shift will

determine the shift direction. The magnitude of the gradient scaled by a feedback gain

can be used to determine the shift distance. To allow a more detailed analysis of the error

feedback, we have been studying images moving in a single dimension only.

It is possible to estimate the limits on the accuracy of the offset determination due

to the use of this simple, aggregate error signal. (More complex and computationally

expensive shift error measures are possible, such as calculating a pixel-by-pixel brightness

correlation function). To determine the effect of the background clutter, we can compute

the change in the sensitivity of the error signal for different background spatial frequencies.

If we assume the background is a one dimensional sinusoidal grating, then the magnitude

of _e error sign_ (as a fraction of its maximum possible value) is given by (2).

offset error (pizels )

IEI2 = 1 - cos(_ • backyround wavelenyth (pizels)) (2)

This result indicates that for very low spatial frequency backgrounds the error signal

due to an offset of a single pixel will be extremely small, (e.g. 0.03% for clutter with a

wavelength of 128 pixels) and will limit the accuracy of the offset optimization. However,

for the applications we are studying, the background will be rich in spatial frequencies, and

this error signal is quite adequate (e.g. 5.0% for clutter with a wavelength of 10 pixels).



3rd NASA Symposium on VLSI Design 1991 4.1.5

It is important that the model be robust to environment and sensor noise. An advantage

of the aggregate error signal used in our algorithm is that temporally uncorrelated noise

will be averaged out in the sum over the image. To a first approximation, the variance

of the error signal will be lower than the variance of the raw image signal by a factor

proportional to the number of pixels. (The true statistics are somewhat more complicated

since the error calculated at each pixel is rectified). Hence, random noise in the signal

should cause little degradation in the optimization of the offset.

While the moving background is eliminated in the difference image, an object being

tracked can take on a complex spatial structure that requires further processing prior

to final detection. The purpose of the image enhancement network is to perform some

of this processing on the difference image and use the processed result to enhance the

retina output. The processing performed by the image enhancement network is application

dependent. In our implementation, the image enhancement network performs a low-pass

spatial filter on the rectified difference image and multiplies this result with the output

of the artificial retina. We envision that further processing will be performed to meet

application-specific requirements. For example, a readout that multiplexes and digitizes

the analog image followed by digital processing, such as the Automatic Centroid Extractor

(ACE) chip [?], will be necessary for a complete real-time tracking system.

Although this processing model is very versatile, there are certain limitations imposed

by the general approach and the model in its current form: objects to be tracked should

have a different velocity than the background; objects should typically fill only a small

portion of the total field of view (FOV); and the velocity of the background must be

relatively constant across the FOV. If an object has the same velocity as the background, it

cannot be distinguished from the background by its motion. If an object fills a significant

part of the FOV, its contribution to the total scene will bias the background motion

adaptation. In the worst case, the object fills so much of the FOV that it essentially

becomes the background. Finally, if the background velocity is not constant across the

entire FOV, the image shift will be misaligned and portions of the background will be visible

in the output. We are currently evaluating techniques to overcome these limitations.

3 Simulation Results

We wrote a simulator which allowed us to evaluate and explore variations of the retina

model. To preserve the analog characteristics of the model and provide the necessary

flexibility for variations, we chose to implement an abstraction of an electronic prototyping

breadboard. Elements of the model are represented as analog circuit modules which can

be "plugged in" and "wired" to other modules on the breadboard. A weft-defined interface

simplifies the task of writing new circuit modules, and existing modules can be grouped

together to provide arbitrarily complex modules.

The image data used in evaluating our circuit designs was derived from a database of

real and synthetic imagery. The syuthetic data includes various simulated cloud scenes

generated with a fractal program, earth scenes generated by a ray-tracing program, and a



4.1.6

frequency modulated (chirped) two-dimensional sinusoid. Our real data is comprised of a

sequence of images looking down upon the Earth from the Space Shuttle Challenger during

the deployment of the Long Duration Exposure Facility (LDEF) satellite (Shuttle mission

STS 41C). A sequence of images representing the output of tile photodetector array was

produced by spatially sampling a single frame of a database image (interpolation was used

to obtain subpixel velocities).

One application of our software simulator in evaluating a given design is to determine

the open-loop (no feedback) response to a moving background. Figure 2 illustrates the

open-loop response of the design presented in this paper to a cloudy earth background

moving at a velocity of -0.25 pixeis per delay (this image sequence was derived from the

Space Shuttle data). Tile error feedback to the image-shifting network was disabled, and

the weights of the image shifter were initialized to values that yielded the desired spatial

offset. A probe was inserted in the circuit to save the error values to a file, and the simulator

was run. Next, the average error for the entire run would be computed, and another run

would be performed with a different spatial= offset. Performing a set of such simulation runs

over a range of spatial offsets yields a curve such as that shown in Figure 2. The minima

of the curve occurs at the spatial offset resulting in maximum background cancelation

(since the background in the delayed image of the example is displaced by -0.25 pixels,

a +0.25 pixel offset is required to bring the output of the image shifter in alignment with

the output of the artificial retina). For spatially simple backgrounds, the open-loop error

curve has a straight "V" shape. The small bends and kinks in the curve of Figure 2 are a

result of the complex spatial structure of the clouds in the moving background.

We have also used the simulator to study the behavior of the closed-loop circuit. In

this mode, the simulator is simply run on a data sequence, and the spatial shift of the

image-shifting network is controlled by tile error feedback network. The initial value of

the image shifter's weights are all zero (no spatial shift), but quickly begin to change to

adapt to the background motion. Similar to the open-loop study, probes are inserted into

the circuit in order to save signals and images to files for post-simulation analysis.

An example of tile circuit's closed-loop performance using the Space Shuttle data with

a superimposed moving object (small Gaussian blob) is shown in Figure 3. Tile back-

ground in the circuit input (Figure 3a) moves -0.25 pixels during the delay period of the

background removal network. Tile object, located above and to the left of the arrow in

Figure 3a, moves +0.25 pixels during the same time interval, and has a relative intensity of

fifteen percent with respect to the peak-to-peak background intensity variation. Figure 3b

demonstrates the circuit's ability to remove the moving background in the input. Although

the object is not easily distinguished in the input, it can clearly be seen in the output.

Stability and noise sensitivity are important concerns with systems involving feedback.

Our current circuit design contains no damping elements. Appropriate choices of the

feedback gain and amplifier cutoff/saturation levels avoid wiht instabilities. However, after

the system has adapted to the motion of the background, we observed that it tends to

fluctuate slightly around the optimal spatial offset value.

In addition to the simulations described above, which were performed in batch mode,



3rd NASA Symposium on VLSI Design 1991 4.1.7

0.05

0.04

0.03

0.02

0.01

0.00
-2

I 1 s I I I J

-1 0 1 2

Spatial Offset

Figure 2: The system open-loop error in response to a background moving at a rate

of -0.25 pixels per delay period. As the spatial offset introduced by the image-shifting

network approaches the complement of the background displacement, the error between

the shifted, delayed image and the unshifted image approaches a minimum. Since the

background in this case has a velocity of -0.25 pixels/delay, the optimum spatial offset is

_'1-0.25 pixeis. The der_vativeof{He e-rrorls_Used {o_'cdrrect theweights in the image-shlfting

network to minimize the drift error.



4.1.8

|

(a) (b)

Figure 3: (a) An input image taken from a sequence of data used in computer simulation,

and (b) thecorrespon_ng enh-anced output image. The earth background in the input

image is moving at a rate of -0.25 pixels per delay period. A superimposed object moving

at a-r-ate of +0.25 pixels per delay period is-noteas]ly _itingulshed_in the inPut image , but

can clearly be seen in the upper-left corner of the enhanced output image. The relative

intensity of the object with respect to the peak-to-peak backgroundintensity is fifteen

percent. Initially, the spatial offset of the image-shlfting network is set to zero, and after

a few simulation steps, the weights of the image-shifting network adapt to the background

motion.



3rd NASA Symposium on VLSI Design 1991 4.1.9

we also implemented a real-time version of the algorithm on a PIPE image processing

computer [?]. The PIPE consists of eight processors operating in parallel, each of which can

perform complex operations on several frames of data in 1/60th of a second, and an ISMAP

board which sums all pixels in a single image. The input to the PIPE implementation

came directly from a tripod-mounted video camera. The output was displayed on a video

monitor. The scalar error signal, which was computed by the ISMAP board, was passed

from the PIPE to an IBM PC where the adaptation algorithm determined the new image-

shifting network weights which were then passed back to the PIPE.

This real-time PIPE implementation allowed us to test the performance of the algo-

rithm under real-world conditions (environment noise, sensor noise, and jitter caused by

vibrations in the camera), and also determine the dynamic offset adjustment for a wide

variety of backgrounds. As demonstrated by a video-tape we made using the PIPE, the
algorithm performs well under these conditions.

4 Z-Plane Implementation

A typical optical sensor system includes optical elements, a planar array of detectors, and

a CCD to multiplex the detector signals into a single signal. In such systems, processing on

the focal plane is usually limited to the integration, amplification, and serial readout of the

detector signals. Many operations that are currently performed off the focal plane on the

digitized detector signals, such as spatial and temporal filtering, would have significantly

higher performance if they could be performed in parallel directly on the continuous analog

detector signals. Recent advances in fabrication and packaging technology provide the

ability to stack analog or digital processing chips together and bond the stack onto the

back of a detector array (the "Z" dimension) [?]. Using this technique, hardware that

can exploit continuous analog image signals may now be sandwiched between the detector

array and readout electronics to form a compact, cube-like image processing device.

The process of manufacturing a Z-plane module consists of thinning integrated circuit

(IC) wafers to a desired thickness by precisely grinding the IC substrate, separating the IC

wafer into individual circuit dies, laminating the circuit dies into a stack, forming external

connections to the laminated circuits, and bonding the stack to the detector array. Z-plane

modules with detector array sizes of 128x128 have been achieved, and arrays of up to

256x256 elements are in the range of current Z-plane technology. Larger focal planes have

been constructed by tiling the focal plane with Z-plane modules, and a specific Z-plane

implementation has been shown to have superior signal-to-noise characteristics, provide

more data processing, and consume less power than a comparable CCD implementation

[7].

The real-time processing required for our applications currently cannot be achieved on

a conventional digital computer; however, our model maps nicely to the parallel, pipelined

structure offered by Z-plane technology. Figure 4 illustrates a preliminary Z-plane packag-

ing concept for our processing model. A photodetector array is bonded onto the first layer

which implements the image conditioning network. The background removal network is



4.1.10

Image Enhancement

Error

Y Stack

linage Conditioning

Photodetector

Array

Readout/Backplane

External Connections

Interlayer

Connections

X

(a) Co)

Figure 4: A preliminary Z-plane design of our model. (a) The exploded view shows the

distribution of processing modules along the Z axis. The first layer is a photodetector

array. An array of amplifiers and a spatial-temporal averaging network that mimics a

portion of the outer retina is implemented in the following layer. The background removal

network is partitioned among the next three layers (the X and Y processing stacks perform

the delay and spatial shift, and the next layer computes the difference and error). Image

enhancementisperforrned in the last processing layer. (b_)-_.--partially assembled cube

_ustrates the use of cube faces for interiayerandexternal communication.= ........

partitioned into three layers. The first two layers implement tile delay and image-shifting

network. The first of these layers performs a delay and weighted sum of the inputs in

the X direction, and the second layer completes the weighted sum in the Y direction (the

stacking of individual IC dies for these two layers are shown in Figure 4a). The third

layer of the background removal network implements the difference and error computa-

tions, and the last layer performs image enhancement. The faces of the assembled cube

provides additional interlayer communication (such as the feedback signals to control the

image shifter), and a readout module would be bonded to the back of the cube to provide

an external interface. The multiplexed readout from such a device could be either analog

or digital, depending on the nature of the readout module. Note that all signals up to the

readout module are analog.



3rd NASA Symposium on VLSI Design 1991 4.1.11

5 Summary and Future Work

We have presented an analog retina model which adapts to background motion in order to

enhance objects with velocities different from that of the background. The results we have

obtained from computer simulation demonstrate the model's ability to perform such en-

hancement for one-dimensional motion. We also presented a hypothetical implementation

of our model using "Z" focal plane technology.

Since the one-dimensional simulation results are very promising, we are now proceeding

to study the remaining research questions to be answered before creating a more detailed

design to be implemented with Z-plane technology. We are currently investigating back-

grounds with two-dimensional motion. Although in principle this is a straight forward

extension to the current modell the error minimization is now in two-dimensions and may

be much more sensitive to system control parameters.

Another important issue is how the system will perform in the presence of external

spatial-temporal noise and internally generated noise (such as noise produced from analog

component drift or component nonuniformity). Some of the noise will be removed by the

artificial retina and by the implicit spatial averaging in the error signal, but we must verify

that the remaining noise does not cause the optimization of the spatial offset to become

unstable or experience significant drift.

We are also evaluating alternate image enhancement strategies (many of these would

naturally be specific to a given application) and techniques to handle significant background

velocity differences over the FOV.

6 Acknowledgements

We would like to thank the FMC Corporation for providing us access to their PIPE im-

age processing computer. This work has been performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National Laboratory under Contract W-

7405-Eng-48.

References

[1] J. Carson, "Applications of Advanced "Z" Technology Focal Plane Architecture,"

Proc. SPIE, vol. 930, pp. 164-182, 1988.

[2] J. Dowling, The Retina: An Approachable Part of the Brain, Belknap Press ofttarvard

University Press, 1987.

[3] F. Eeckman, M. Colvin, and T. Axelrod, "A Retina-like Model for Motion Detection,"

Proc. IJCNN, vol. 2, pp. 247-249, 1989.

[4] T. Axelrod, T. Tassinari, G. Barnes, and K. Cameron, "A VLSI Centroid Extractor

for Real-Time Target Tracking Applications," Proc. SPIE, vol. 1154, pp. 306-312,



4.1.12

1989.

[5] J. Martin and T. Sangston, "Z-plane Comparison with CCD for Lightning Mapper

Application," Proc. SPIE, vol. 1097, pp. 16-27, 1989.

[6] Randy Luck, An Overview of the PIPE System, ASPEX Inc., 536 Broadway St. 10'th

Floor, New York, NY.



3rd NASA Symposium on VLSI Design 1991
N 9 4- 18 34. . I

Low Power Signal Processing Research at Stanford

J. Burr, P.R. Willlamson and A. Peterson

Space, Telecommunications, and Radioseience Laboratory

Department of Electrical Engineering

Stanford University

Stanford, Ca. 94305

burr @moj ave. st anford.edu

Abstract - This paper gives an overview of the research being conducted at

Stanford University's Space, Telecommunications, and Radioscience Labora-

tory in the area of low energy computation. It discusses the work we are doing

in large scale digital VLSI neural networks, interleaved processor and pipelined

memory architectures, energy estimation and optimization, multichip module

packaging, and low voltage digital logic.

1 Introduction

Our research in low energy computation for signal processing is being supported in large

part by NASA. The neural network research is being funded by the Center for Aeronautics

and Space Information Sciences (CASIS). Low energy computing research is being funded

by NASA grant NAGWl910, "Low power signal processing technology for space flight

applications".

2 Overall motivation

Our research in low energy computing is driven by the need to maximize computation

rates in power constrained environments. Space based data systems and large scale neural

networks both require low energy per operation; in flight systems, to minimize Power

consumption during data gathering, processing, storage, and communication; in neural

networks, to achieve the necessary computation rates within manageable power budgets.

These systems are characterized by high sustained levels of computational effort, unlike

typical portable computer applications, which tend to have bursty, and much more modest,

information processing requirements.

3 4:2 adder based architectures

We have been building deeply pipelined, parallel signal processors since 1985 [17,18,3,2,19].

We came up with a multiplier architecture which struck a balance between throughput,

latch overhead, and regularity [18]. The multiplier consists of a tree of "4:2 adders" (see Fig



4.2.2 in4 in3 in2 in1

tout cin

¢

Figur.e _.: 4:2 adder. The critical path corRajns three xors in serie__.

- zcs--? ?

i

z

_z

=_
z--

Figure 2:4:2 multiplier. N parti-_-prgducts -ad reduced to 2 _in loL-(N)/}-2 stages of 4:2

_dder_ .....................
Z

z



3rd NASA Symposium on VLSI Design I991 4.2.3

2). A 4:2 adder (see Fig 1) has 4 inputs, a carry in, and generates two outputs and a carry

out. The carry out does not depend on the carry in. The 4:2 adder can be implemented

using two full adders, but a direct logic implementation can reduce the critical path from

4 xors in series to three. A multiplier built out of a tree of 4:2 adders has a much more

regular structure than a Wallace tree [1], which uses a full adder to reduce three partial

products to two at each stage. The 4:2 tree reduces 4 partial products to two at each

stage, and has the self-similarity of a binary tree. A 4:2 adder can eitlciently accumulate

successive products in carry-save form. It can also be used in an ALU to perform arithmetic

operations in time independent of the number of bits in the operands.

We have recently shown that power is minimized in a parallel multiplier when Id =

11 [10]. A 4:2 adder has a logic depth of 10, including latches. By comparison, RISC

microprocessors typically have logic depths around 40.

We currently have a number of projects which are implementing architectures based on

the latency in a 4:2 adder. We were becoming concerned about the feasibility of running

systems at the clock rates implied by a logic depth of 10: in 0.8 micron CMOS, a 4:2

adder based clock generator circuit runs at 400MHz [20]. However, similar speeds have

been reported elsewhere [21]. Recently, with the opportunity presented by tiled architec-

tures and 3D multichip modules as discussed in [10,27], it appears that deeply pipelined

architectures can also achieve good performance at very low energy.

4 Neural Nets

Large scale neural nets will require on the order of 10 as connections per second (CPS) [9].

Digital VLSI neurochips reported so far require around lnJ per synaptic connection [22];

10 is CPS would require a megawatt! Biological neurons require around lfJ per synaptic

connection, 6 orders of magnitude less. Attaining biological energy efficiency in silicon is

a formidable challenge. We have identified a number of factors which together may reduce

connection energy by 5 orders of magnitude to 10fJ per connection, permitting 10 is CPS

at around 10 watts. These include: reduced arithmetic precision (10x), reduced feature

size (10x), and low voltage operation (1000x).

In addition to investigating performance of large networks, we are implementing a

digital Boltzmann machine [22] to demonstrate the viability of reduced precision, pipelined

digital learning machines. The chip is being implemented in 2.0u CMOS, and consists of 32

5-bit neural processors, each supporting 1K 5-bit weights and capable of 80MHz operation.

The chip will be capable of 2.5 billion connections per second, and 320 million connection

updates per second.

5 Pipelined Memory

We are implementing a pipelined memory architecture (see Fig 3) which achieves high

throughput by recursively subdividing the memory array into sections which can be tra-

versed in a single cycle. Addresses are partially decoded in each section. The remaining



4.2.4

I

Figure 3: Pipelined memory

_address bits are routed to the appropriate subsection where additional bits are decoded.

At the lowest level, the remaining bits are decoded and data is read out of or written into

a memory block. For read operations, the data is delivered back up through the subsec-

tions on subsequent cycles until it emerges at the pads. For write operations, the data

aeco_ m_p___anie_ the addre_ss down_the tree ..... ....... == .... _

e size of t.hememory block is matched to the propagation delay thr0u_g_h a 4: adder.
This turns out to be about 32 words x 32 bits. We have written an opt_imizer which siz_

the transistors in this block for the minimum area and power that matches the delay [25]s

We pipeline .the address decode and data return, placing plpestages to m_nimize power

dissipation. Power dissipation in the memory is greatly reduced by selectively clocking the

portion of the memory which contains the data,leaving the rest of the system on standby.

- _rareh]c_memor_ o_ganizatlon_rst appea'-"red_nMead and (_onway_12,11], but th_s

arch!Te_re was not -pq-p_-.-Anunplpelined bqnary tree memory was described at the

1987 International Test Conference [8,26]. Hierarchical address decoding was reported in

a 4M-b SRAM with seiect_ve enable to reduce power dissipation [7].

A pipelined memory architecture was discussed in [28]. The CT7C158 is a pipelined

64K SRAM offered by Cypress Semiconductor, who say: "Pipelined RAMs are used in

writeable control store, DSP and logic analyzer/tester applications where throughput is

the critical parameter." .............

Our pipelined memory is the first to combine hierarchical address decoding and selective

clocking to maintain very high throughputs and very low power dissipatiox_.



3rd NASA Symposium on VLSI Design 1991 4.2.5

1 2 3 4 5 6 7 8 9 10 11 12 13

IF MEM

IF

Figure 4: Interleaved processor pipeline, with a normal RISC pipeline for comparison. In

this example, instruction fetches and memory accesses take four cycles. There are four

independent instruction streams in various passes of execution.

6 Interleaved Processor

We are working on a processor architecture which achieves high performance by interleaving

independent instruction streams on a deeply pipelined processor (see Fig 4). The number

of independent streams is matched to the latency in the pipelined memory. The clock

frequency is a multiple of a RISC clock, and is obtained by placing extra pipestages at

critical points in a RISC architecture. The number of extra pipestages is smaller than

expected because many of the normal RISC stages do not use up an entire clock cycle.

Our objective is to achieve a 4x speedup over RISC in a given technology, and to implement

a subset of the MIPS R3000 instruction set. We are experimenting with a variety of power

reduction techniques at the circuit and system level in the processor design.

Multiple instruction stream processors have been built before (Burton Smith's work on

HEP, Horizon, and Tera [16,15]), but only in the context of large supercomputers and not

single integrated circuits, and not matched to the latency of a pipelined memory. Edward

Lee at UC Berkeley proposed an interleaved architecture for use in signal processing [14],

but his design is not pipelined as deeply as ours, and does not include pipellned mem-

ory. The only reference we have found so far which describes an interleaved processor

and a pipelined memory is a Japanese paper on gate-level pipelined Josephson Junction

circuits [28], which also describes a method to increase the throughput of CMOS memory



4.2.6

by pipelining, but the two concepts are not synergized, and the memory organization is

not discussed. Stone and Cocke say "some combination of long pipelines and multiple

interleaved instruction streams may eventually prove effective for combining high speed

and high efficiency" but give no details [23].

The RISC community is also investigating techniques for increasing performance. The

two chief techniques are superscalar and superpipelined architectures [5]. In superscalar,

more than one instruction may be in progress at a given time. In superpipellned, the

RISC pipe is broken into a number of smaller stages with reduced logic depth. Both of

these approaches result in added control complexity managing the potential hazards and

resource conflicts which may result.

Superscalar machines, such as the Intel I860, fetch more than one instruction on each

cycle, and execute in parall_ whenever possible_ T_h_r_ are restrictions_ i_n the combina-

tion of instructions which c-an beqssued simultaneously-.-gupersc_kr i_creases resource

utilization but does notqncrease t_4 t_firoughput of a given functional unit.

We reduce RISC logic depth by a factor of 4, and introduce 4 independent, interleaved

instruction streams. The streams are kep_ e_e_ndent to avbi_th-e_ib,-rdware complexities

associated with managing a highly pipefined single thread of control. Each instruction

stream executes its next instruction every fourth cycle. Tie control complexity is no worse

than for a RISC machine but the throughput is 4 times greater on problems that can be

paraiiefized. Fortunately, these are commonplace in signal processing. The architecture

also supports zero-overhead context switching of up to 4 processes. This is very useful in

embedded real time control applications.

6.1 Timing

Real time signal processing tasks often require "precise" timing. This is not easy in cache-

based architectures, since cache miss recovery times can often be data Clel_endent. -T--he

plpellned memory/interleaved processor behavior is precise: instruction latencies are fixed.

Memory fetches always takes 4 cycles. There are never any cache misses. Branch timing

is precise,

in a conventional RiSC machine, the latency that takes place during a branch is un-

predictable, because it depends on whether the target address is in the instructioncache_

and if so, h_ it is _gned within tlae cache entry that contains i-t. Given a 4 cycle latency

to fill a line in the cache, and a cache finewidth of 4 words, a branch target will only point

to the first word in t-he line 25% of the time. The system must stall fetchingthe fine
following the line cont_ning t'he branch target adclress. The AMD29000 "branch target

cache" solves this problem by aligning cache fines to branch targets. This increases the

complexity of the memory subsystem. The interleaved processor solves this problem by

maintaining a fixed latency on every instruction fetch. .......



3rd NASA Symposium on VLSI Design 1991 4.2.7

6.2 Energy

Our objective has been to maximize overall performance. With the advent of Multichip

module technology, the performance of an individual chip must be considered in light of

the system. We now are designing to maximize performance at minimum energy. The best

way to do this is to obtain the maximum possible throughput, and use the performance

margin to lower the supply voltage until all the available area is used and the power budget

is met.

The clock frequency can be increased by a factor of 4, so that each stream can execute

as fast as a RISC processor in the same technology, and the processor can achieve 4 times

RISC performance. This implies 400MHz in 0.8 CMOS. Although this is feasible for small

numbers of processors, we plan instead to lower voltage by a factor of 4, to 1.25V. This

will give us the same 2D performance density as a RISC machine, but will require only

1/16 the energy per operation and 1/64 the power. We can capitalize on MCM technology

to achieve 64 times the performance with 64 times the area for the same power budget.

Also, because resources are pipelined, more time is available to wake up an idle resource

or put it on standby. Resources only need to be clocked if they are being used. If a resource

is used by one stream, but not by the next, the inputs to that resource can retain their

previous values.

Register files normally consume a significant portion of the power budget. Since each

stream has its own register file, the access rate to a register file can be 1/4 the system

clock frequency. Conventional SRAM is faster and lower power than multlported register

files since the bitlines never have to swing more than 100mV for reading or writing. If the

SRAM can be accessed in a single cycle, it can emulate a 4-port memory which can support

any combination of up to 4 reads or writes every 4 cycles. In its standard configuration it

would be accessed sequentially to fetch two operands and write back a third. Whether this

results in less energy depends on how often operand addresses are repeated on successive

instructions.

6.3 Area

The interleaved processor should require area comparable to a RISC processor because

four sets of registers, program counters, and other state registers take no more area than

on-chip instruction and data caches.

7 Multichip Modules

Multichip module packaging provides a number of significant new opportunities in sys-

tem architecture and implementation. Bare die can be placed much closer together than

packaged parts, leading to shorter wires and reduced communication energy. Area bond-

ing reduces lead inductance, permitting higher frequency interchip communication. Small

bonding pads and high connective capacity support seamless interchip communications



4.2.8

optimized for propagating signals a few centimeters. Intrinsic bypass capacitance due to

thin dielectric separation of Vdd and Gnd planes results in higher noise immunity.

The net result is the opportunity to reduce communication energy and increase system

level performanc e by orders of magnitude compared to conventional packaging techniques.

We are developing !nterconnec t structures, data transmission circuits, and cloc k d_stribu-

tioa structures for high performance (hundreds of MHz), low power (tens of roW) MCM

system s. Muc_h of our w0r _ !_n thi_s area has been reP0rted - i_n [24].

We have designed a test module which is being fabricated by ATT. It includes passive

structures for measuring cap_ __, _d characteri_ic impedance of a variety

of conductor geometries. It Mso has two sites for MOSIS TinyChlps which wil! test the

interconnect by exchanging pseudorandom bitstreams through single ended and differential

transceivers at data rates in excess of 200 MHz.

7.1 Tiled architectures for signal processing

Th e opportun!ty exists t o extend the concept of regularity and locality so widely used in

VLSI design to the multichip module level, and to identify a set of process_o_r tiles _w_hich
can tessellate the plane to generate massively parallel architectures. We are investigating a

variety of-at_ied _ architecture opportunities. We have extended our neural net ]]oltzmann

machine architecture to accommodate an arbitrarily large two dimensional array of chips.

8 Multiprocessing

The interleaved pr0cessor is inherently a symmetric shared memory multiprocessor. Mem-

ory consistency is guaranteed because there is no cache. We are investigating ways to

interconnect interleavedproocessors for massive!y paralle ! mu!t!process!ng.

8.1 Hierarchical pipelined ringbus

One possible organization of a massively parallel system is a "hierarchical ring bus" _ar-

chitecture which supports high bandwidth pipelined clara exchange among multiple pro-
cessors. The overall topology consists of rings of processors connected by gatew_ays. Each
local ring can sustain data transfers at the processor clock rate. Because the bus itself
is pipelined, multiple transactions can be in progress concurrently, up to the number of
p_rocess_o__rs- !n t_he r!ng. O_ne o_f the_ n_odes in the r!ng can be a g atewa_y to an_o t_he_r ring and

can sustain the same I,/O bandwidth. We plan to match the bus clock frequency to the

latency of a 4:2 adder ....

This architecture has been proposed elsewhere [15]. We think it is well matched to

the performance and latency of the interleaved processors and multichip modu! e b.ase_d

multiprocessors. In the spirit of int_er!eaved instruction streams, the latency to complete a

single b_us t ra_nsaction_ wi_ be_ at least ec!uM to the _n_umbe_r of processors in t_he _n'n_g, but

a separate bus transaction canbe inprogress simultaneously on each segment of the ring.

This will result in substantially higher throughput than conventional bus architectures - in



3rd NASA Symposium on VLSI Design 1991 4.2.9

excess of 1 Gbyte/sec. This architecture is well suited to datastream oriented algorithms

common in real time signal processing.

Although this approach introduces single point failures at each node in the ring, when

placed in the context of 3D multichip module implementation we think the approach has

some significant advantages.

The ringbus concept can be extended gracefully to large numbers of processors by recur-

sively adding subrings connected by gateways. We will be analyzing the implementation

complexity, energy, and performance of this approach in comparison to other processor

communication networks.

Of key interest is mapping numerically intensive signal processing problems onto this

architecture. A 1024 processor system might consist of 64 rings with 16 processors in

each ring. At 400 MIPs per node and 1 Gbyte/sec per ring, total performance would be

400GIPS; total throughput would be 64 Gbytes/sec. Ring size can be optimized to balance

instruction and communication bandwidth.

9 Energy estimation and optimization

We estimate energy using

where a is the activity ratio, the fraction of transistors switching on each cycle, C is the

capacitance being switched, V is the supply voltage, Idc is the DC current, and f is the

clock frequency.

This technique relies on short circuit current being a small fraction of the total.

We are investigating techniques for minimizing power dissipation by minimizing tran-

sistor sizes while minimizing short circuit current. These are conflicting constraints, and

can lead to substantial power reductions over techniques which ignore short circuit current

and assume minimum size devices result in minimum power.

We have modified our timing simulator to measure AC power dissipation by accumulat-

ing dumped charge. Preliminary results suggest good agreement with power measurements

on fabricated chips. We are extending this technique to measure peak power. We have

developed a memory block optimizer which sizes transistors in the pipelined memory to

maximize a "merit" function which is a weighted combination of performance, power, and

area. We are including the effects of short circuit current on both our transistor sizer and

our memory block optimizer.

We have found that transistor sizing is important in optimizing highly pipelined de-

signs. Balancing clock delays is especially important to minimize clockskew in the system.

Transistors can also be sized to minimize energy, which involves balancing short circuit

current against gate capacitance.



4.2.10

10 LowVoltage Digital Logic

Massively parallel architectures tiled on 3D stacked multichip modules can quickly exceed

the ability to extract heat from the structure. Reducing the supply voltage promises

substantial reductions in energy and power; we are investigating the practical limits to low

voltage operation. This area is covered in depth in [10].

Our approach to low energy computation has attracted interest from a number of

sources: More det_!edinvestigation into the opportunity is being funded as a "Research

thrust" by Stanford's Center for Integrated Systems. These research thrusts involve inter-

action with technical liaisons from CIS industrial partners. So far, the Ultra Low Power

thrust has liaisons at DEC, GE, IBM, Intel, National Semiconductor, and TI.

11 Personnel

XCgho the group is:

Professor Allen M. Peterson, Principal investigator

P. Roger Williamson, Senior Research Associate

:lames B. Burr, Senior Research Engineer

Low Energy Computing

Bevan_aas c0mputer _trc_hitect ur e ......... := ..... - -

Jim Burnham high speed interconnect -

Ely Tsern interleaved algorithms

Gerard Yeh Low energyVLSI circuits

Sabeer Bhatia Low energy process design

Neural Networks

Kan Boonyanit Approximate Grad-lent Descent _ : :_ --:

Karen Huyser W_er bdect tiassificadon--
Michael Leung Texture Recognition
Michael Murray Precision, Learning, and VLSI

Collaboration

ArT, multlchip modules : : :

Sun, energy optimization

Intel,

Ricoh,

digital neural network architectures

neural net coprocessors



3rd NASA Symposium on VLSI Design 1991 4.2.11

12 Conclusion

Our research in low energy computation has been motivated by recent trends in VLSI

technology, multichip module packaging, and application architectures. We believe the op-

portunity exists to achieve very high computation rates in power constrained environments

by reducing decision, storage, and communication energy.

13 Acknowledgements

This research was supported in part by NASA grants NAGW1910 and NAGW419, by a

gift from Intel Corporation, and by a grant from Stanford's Center for Integrated Systems.

Multichip modules were provided by ATT, workstations by Sun Microsystems, and VLSI

fabrication by MOSIS.

References

[1] Shlomo Waser and Michael J. Flynn, Introduction to Arithmetic for Digital Systems

Designers, CBS College Publishing, 1982.

[2] Weiping Li and James B. Burr and Allen M. Peterson, " A fully parallel VLSI im-

plementation of distributed arithmetic", IEEE International Symposium on Circuits

and Systems,June, 1988, 1511-1515.

[3] Weiping Li, " The Block Z transform and applications to digital signal processing

using distributed arithmetic and the Modified Fermat Number transform", 1988.

[4] Weiping Li and James B. Burr, " An 80 MHz Multiply Accumulator", PhD thesis,

Stanford University, 1987.

[5] John L. Hennessy and Norman F. Jouppi, " Computer technology and architecture:

An evolving interaction ", IEEE Computer Magazine, 9, 1991, 18-29.

[6] James B. Burr and James R. Burnham and Allen M. Peterson, " System-wide energy

optimization in the MCM environment ", IEEE Multichip Module Workshop, 1991,

66-83.

[7]

[8]

Toshihiko Hirose, Hirotada Kuriyama, Shuji Murakami, Kojiro Yuzuriha, Takao

Mukai, Kazuhito Tsutsumi, Yasumasa Nishimura, Yoshio Kohno and Kenji Anami,

" A 20ns 4Mb CMOS SRAM with hierarchical word decoding architecture ", IEEE

International Symposium on Circuits and Systems, 1990, 132-133.

Najmi T. Jarwala and D. E Pradhan, " An easily testable architecture for multi-

megabit RAMs ", IEEE Test Conference, 1987, 750-758.



4.2.12

[9] Carol Weiszmann, " DARPA Neural Network Study ", October 1987 - February 1988,
AFCEA International Press, 1988.

[10] James B. Burr and Allen M. Peterson, " Ultra Low Power CMOS Technology ", NASA

V£SI Design Symposium, 1991.

[11] Carver Mead and Lynn Conway, Introduction to VI, SI Systems, Addison-Wesley, 1980.

[12] Carver A. Mead and Martin Rem, " Cost and performance of VLSI computing struc-

tures ", IEEE Transactions of Electron Devices, April, 1979, 533-540.

[13]

[14]

Kentaro Shimizu, Eiichi Got_o and Shuichi Ich_awa, " CPC (Cyclic Pipeline Com-

puter) - an architecture suited for Josephson and Pipelined-Memory machines ", IEEE

Transactions on Computers, Volume 38, Number 6, June, 1989, 825-832.

Edward A. Lee and David G. Messerschmitt, " Pipeline interleaved programmable

DSP's: Architecture ", IEEE Tran,actions on Acoustics, Speech, and Signal Process.

ing , Sept, 1987, 1320-1333.

[15] Burton J. Smith, " The Horizon Supercomputer ", Supercomputing, Oct, 1988.

[16] Burton J. Smith, " Architecture and applications of the HEP multlprocessor computer

system ", SPIE, Real-Time Signal Processing IV, 1981, 241-248.

[17] James B. Burr and others, " A 20 MHz P_rime Factor DFT Processor ", Stanford

University_, Sept, 1987.

[18]

[19]

Weiping Li and James B. Burr, " An 80 Mttz Multiply

report, Stanford University, Sept, 1987.

Accumulator " technical

Alfred J. Eiblmeier, " A reduced coefficient FFT butterfly processor

port, Staford University, Oct, 1988.

" technical re-,

[20] M_k R. Santoro, " Design and Clocking of VLSI Multipliers ", PhD thesis, Sanford
Urn'versify, 1989.

[21] Y. Siren, I. Kar!sson and C. Svensson, " A true single phase clock dynamic CMOS

circuit technique ", IEEE Journal of Solid-State Circuits, 1987, Volume SC-22, 899-
901.

[22]

[23]

James B. Burr, " Digital NeuraI Network implementations ", Neural Networks: Con-

cepts, Applications, and Implementations, Volume 2, Prentice Hall, 1991.

Harold S. Stone and John Cocke," Computer architecture in the 19908 ", IEEE

Computer Magazine, Sept 1§§-1_ 30:38.

[24] James B. Burr, James R. B_rnham and Allen M. Peterson, " System-wide energy

optimization in the MCM environment ", IEEE Mult_Chip Module Workshop, 1991,
66-83.



3rd NASA Symposium on VLSI Design 1991 4.2.13

[25] Bevan Baas, " A pipelined memory system for an interleaved processor", technical

report, Stanford University, Sept, 1991.

[26] Dhiraj K. Pradhan and Nirmala R. Kamath, " RTRAM: Reconfigurable and testable

multi-bit RAM design ", IBEB International Test Conference, 1988, 263-278.

[27] James B. Burr and Allen M. Peterson, " Energy considerations in multichip-module

based multiprocessors ", IBBF, International Conference on Computer Design, 1991.

[28] Kentaro Shimizu, Eiichi Goto and Shuichi Ichikawa, " CPC (Cyclic Pipeline Com-

puter) - an architecture suited for Josephson and Pipeline&Memory machines ", IBBB

Transactions on Computers, Volume 38, Number 6, June, 1989, 825-832.





3rd NASA Symposium on VLSI Design 1991

N94-18352
4.3.1

Technologys Designs Simulations
and Evaluation for SEP-Hardened Circuits

J. R. Adams, D. Allred, M. Barry, and P. Rudeck,

R. Woodruff, J. Hoekstra, and H. Gardner

United Technologies Microelectronics Center

1575 Garden of the Gods Road

Colorado Springs, CO 80907

Abstract- This paper describes the technology_ deslgn_ simulation_ and evalu-

ation for improvement of the SEP hardness of gate-array and SRAM cells.

Through the use of design and processing technlques_ it is possible to achieve

an SEP error rate less than 1.0E-10 errors/blt-day for a 90worst-ease geosyn-

chronous orbit environment.

1 Single Event Upset

Single Event Phenomenon (SEP) occurs when a particle or heavy ion interacts with the

silicon, depositing charge on critical circuit nodes, causing data loss. Devices that retain

data (RAMs and flip-flops, for example) are subject to SEP, and a particle interaction

in one part of the chip can cause data loss in a circuit located far away. Non-storage

nodes can propagate the pulse to other circuit nodes, but no permanent data will be lost.

Storage devices like RAMs, latches, and fllp-flops may detect false clock pulses, or reset

signals caused by a pulse on a circuit node somewhere in the clock, or reset generation and

buffeting circuitry, and lose data.

The storage node critical charge, Qc, is the amount of charge that must be deposited

on the storage node in order to upset the stored data. Increasing the critical charge for

the sensitive nodes in a cell will decrease the SEP error rate by lowering the probability of

encountering an ion with sufficient LET value to upset the cell. This critical charge can

be increased by changing the transistor sizes to make the cell more stable, adding parallel

paths in the cell, and increasing the feedback switching time. A more stable storage cell

will require a greater voltage change on the storage node, or a longer voltage pulse to

disturb the data.

2 Charge Deposition Model

In the past, the literature has implied that the charge generated by a single event may

be modeled by using an ideal current source with an exponential time decay. Using this

method, the current source is connected directly to the sensitive node, and the charge

applied is the time integral of the current pulse. This method can over-predict the value

of the critical charge for the memory cell because the current source causes the junction

to which the current source is applied to become forward biased and sink a significant



4.3.2

amount of charge to the power supply. Physically, the charge collection process is self-

limiting, and the junction will never conduct Current in the forward direction. This is /L

very common error which has led to substantially over-predicting the SEP hardness of a

particular design. This can lead to substantially higher SEP error rates in the circuit than

can be tolerated by the system design. In this paper, we describe process, simulation, and

design techniques that may be used to:. improve the SEP hardness of CMOS clrcults.

3 SEP Simulation

V¢_e have used both HSPICE and DAV_i (tm):_i] _orn.ode| SEP phenomenon, in the

SPICE simulation, the cellsub-circuit is accurately modeled using device parameters which
have been demonstrated to correlate with measured silicon values. Figure 1 shows the sub-

circuits that model the charge deposition. They use ide_zed MOS de_c-es as Swi_¢_,
and standard SPICE components for everything else. This modeling technique prevents
forward-biasing of the junction and piovides a more accurate simuiation of the char_
required for circuit upset [2]. An internal node, Nae#,_Fni_i_zed to a voI_i Vaep,
by switch N3 where Vdep × Cdep Qdep (Qdep is the simUia_ed dep0slted charge), k

switch, P2 or N2, is turned on in approximately 0_I iiS, shorting the node under test t_ a

power supply t_r0ugh a resistor thKt _repr-esents the reslstance of the buIk s_ii,

(LOW PULSE) (HIGH PULSE)

_vt}0 v00 _D

, = _(vO

VSS

VDEP _ /-

vss kJ

VDEP f
VSS

I= l(VI)_

T_NODE

O.OV

SWITCH N_Ii

VSS

CD[P SWffCH 4

- NDEP _

NDEP START--_ u

vss VDD .j_
VDEP

VDD

VDEP

z<

Figure 1: SPICE Charge Deposition Circuit

I

OOV(

===A
f. NODE

As charges are added to the node under test, the same amount of charge is removed from

the interna_ node Ndep. Whenihe]nternai node Ndep iS clepieted of ci_arge I a switc_n, P1

or N1, turns off so the circuit can recover its node voltages. A similar but slightly differeh[

version of this charge deposition model is used for p+/n- and n-/p+ junction interactio_g.

Tiffs technique hK_ proven extremely valuable to op{im_ze _e_ an_iayoui j Edge

and memory circuits for _EP hardness'



3rd NASA Symposium on VLSI Design 1991 4.3.3

Numerical simulation of the charge deposition from a heavy ion hit has been attempted

by others. [3,4] We have performed three-dimensional numerical simulation of single event

upset using the three-dlmensional simulator, DAVINCI tm. The simulations were per-

formed on an n-channel junction of a twin-tub CMOS device with approximately 4 um of

an epitaxial layer. In figure 2, the potential contours of the device junction are shown 48

ps after a single event hit with a gold ion. Note that the n+ junction is no longer at five

volts and that the distribution of the funnel favors the epi/p-well junction. As the voltage

at the n+ junction is reduced, there is less potential difference to the funnel as opposed to

the potential difference of the funnel to the epi, which is held at five volts.

seu7goldSO_let Potential 48.0ps

.%

o

-g

seu7- Node Voltages

m_ate

n÷ drain

Figure 2: Junction Potential After Ion
Strike

Figure 3: n+junction vs. p-weU and sub-

strafe

Figure 3 shows the potential of the n+ junction relative to the p-well contact and epi

substrate contact. Note that the time constant is _.-5-10 ps. Whether a fllp-flop will change

state as a result of this SEP event will depend upon how long the n+ junction potential is

below the switch point of the cell. The n+ junction can go to zero volts and not cause an

upset if it recovers before the zero can propagate back through the cross-coupled logic. We

have found DAVINCI tm useful for looking at wafer fabrication process methods for SEP

hardening of CMOS devices, as it enables the evaluation of effects of doping concentration,

epi thickness, etc.



4.3.4

4 Heavy Ion Testing And SEP Numerical Calculation

Heavy ion testing for this work was performed at Brookhaven National Laboratories, using

their Tandem Van de Graaf_ system. Three ion conditions were chosen for this testing.

They included Gold at 350 MeV, Iodine at 320 MeV and Bromine at 285 MeV. The LET

values were further varied by adjusting the angle of incidence from 0 to 60 degrees.

To determine the SEP error rate from measured data, the effective cross- section is

selected at an LET of 100 MeV × cm2/mg (surface value). The upset rate calculation

can be performed using either CREME [5] or SpaceRad [6] programs. The simulation

conditions for determining the error rates quoted in this paper are as follows:

1. Geosynchronous circular orbit, 35900 km;

.

3.

.

Orbital inclination, 0 degrees;

Adams 90% worst-case environment, including the earth'sshadow and geomagnetic
storms;

All ions from Hydrogen through Uranium i<Z<92.

5 Process Techniques For SEP Hardening Of CMOS

Devices ................. --
. _ _ -:- __ . ---- _-_-- .... - •

Wafer fabrica(ion processing can have a strong-e_i_eeCon=t-he _P sens__o_ UMOS

circuits. As shown in the DAVINCI tm simulations above, over haft of the charge deposited

by a heavy ion can be conected at the epitaxial junction, away from sensitive circuit nodes,

if the epitaxial layer is sufflciently thin. Also, because the drive current of p-channel devices

is typieany less than that of n-channel devices, the most SEP-sensitive nodes tend to be

n-channel nodes supported by p-channel transistors. Therefore, to minimize the charge

collection on these nodes, a p-well type process-_s Cle-sirabie since the p-well-to-substrate

junction will help to collect a substantial portion of the deposited charge.

Also, because n-type dopants (n-type substrates are used for a p-well process) diffuse

much slower than p-type dopants, -it-is possible to i'abricate much thinner epitaxial lay-

ers for a p-well process, further improving the SEP sensitivity of the technology. The

lower sheet resistances and (typically) higher doping of a p-well process also help to eli mif-

nate SEP-inducedlatch-up. YI_gh doping concent_rat-ions also help to _ncrease the junc-tlon

capacitance, further improving SEP susceptibility. Thin gate oxide also increases node

capacitance, thereby-in_cre--as_gthe critical chard-on a node an_13mproving SEP "ha.rdhess.

Poly-resistors or natural p-channel transistors can also be added to the process to allow

the design of high-density SEP-hardened memory cells.

S0$ and $-()i-(s-ihcon-On-S_ye and Silicon-On-Insulator) processes reduce the

amount of charge collected on the junction and the effective critical charge on each node.

Thin-film SOI devices are also sensitive to bipolar snap-back. This has the effect of making



3rd NASA Symposium on VLSI Design 1991 4.3.5

the channel region of the n-channel transistors sensitive to SEP upset. Therefore it is not

sufficient to process a design on SOS/SOI substrates to obtain good SEP performance.

Design and special processing techniques must be used also to assure SEP hardness of the

circuits.

Commercial CMOS wafer fabrication processes usually do not consider SEP upset and

latchup in their design. They are optimized for speed and density, both of which can

compromise good SEP performance. UTMC has designed its twin-tub epitaxial p-well

CMOS process (including poly-resistors) and layout rules to provide an optimum balance

between good SEP performance, latchup immunity, speed, and density.

6 SEP Hardening Techniques For Memory Circuits

In the design of memory systems, several techniques may be used to provide SEP-insensitive

memory systems. These include the use of redundant memory with voting logic and/or

error detection and correction. Both of these techniques require additional system overhead

and result in a degradation of system performance, as well as increased cost and weight.

Some systems cannot afford this additional overhead, and therefore require the use of

SEP-hard SRAMs.

Several SEP hardening techniques for SRAM memory cells have been reported in the

literature. These include the use of cross-coupled resistors, cross-coupled capacitors, and

cross-coupled p-channel transistors. [7,8] A schematic diagram of a memory cell with cross-

coupled resistors (as used in UTMC's tad-hard 64K SRAM) is shown in figure 4. All of

these techniques serve to increase the write time constant of the cell, thereby increasing the

effective critical charge on the internal nodes of the cell. All of the techniques increase the

wafer fabrication processing complexity and the area of the SRAM cell. The advantages

and disadvantages of each are shown in Table 1.

ROW _--

Y0O

vSS

VDD

P2__ J! _

VSS

Figure 4: Memory Cell Schematic

Today, cross-coupled resistors are used in many SEP-hard designs primarily because

the processing required to add and control the resistors is a relatively straight forward

extension of standard CMOS SRAM processing techniques. However, if proper care is not

taken to optimize the cell layout for performance, SEP sensitivity, and resistor tolerance,



4.3.6

SRAM CeLl

Hardening Technique

Cross-coupled

resistors

Advantages

Known processing.

First published

technique.

Disadvantages

Cross-coupled Minimum variation of

capacitors SEU with temperature. Cell area.

Cross-coupled Minimum cell area.* Process control on transistor

transistors Vt.

* Wechnoiog; and layout dependent

TCR of resistor causes SEP

sensitivity to change

over temperature.

Cell area.

Effects of resistor geometry.

-Cap oxide defect sensitivity.

Table 1: Advantages and Disadvantages of SRAM SEP-Hardening Techniques

SEP performance may be greatly degraded at high temperature (above 85 C), and write

cycle time may be degraded at low temperature (-55 C).

6.1 SEP-Hardened Memory Design

We have taken great care to optimize the performance of the tad-hard 64K SRAM over

the entire military temperature range (-55 C t o 125 C). Th e size of the transistors i_
the cell were optimized in concert with the cross:coupled resistor value s using the SPICE

simuiation techniquesdescri_Se-cl earner to assure that the product would be manuractdrable

and meet data sheet specifications, including alE- 10 error/bit/day requirement, over _(he

entire military temperature range. UTMC's 64K SRAM memory cell is more stable thaii

most gRAM memory ceUs because the p-channei transistor in the 64K SRAM memory

cell is larger than the n-channel transistor and will suppiy almost as much current. The

increased p-channeI size increases the switch point of the cross-coupled inverters from

approximately Vtn (0.8 V) to a,pproximately Vdd/2 (2.5 V).-The increased switch point

requires that a part(de-induced voltage pulse on one of the storage nodes exceeds Vdd/2

instead of Vtn before the other storage node can be affected. A more stable memory cell

is harder to write and requires additional area. The increased p-channel transistor size

increases the die size by appro_mately 7%.

In UTMC's 64K SRAM, the write time specification can be met even with the more

stable memory cell because the write circuitry forces the memory cell columns to Vdd and

Gnd during a write operation. Although the write circuitry that provides Vdd and Gnd

is larger than a standard write circuit that only provides Gnd, it increases the die size by

less than 0.5_0.

The 64K SRAM uses high-valued polysiticon resistors in series with the gates of both

cross-coupled inverters and increased capacitance on the storage nodes to increase the



3rd NASA Symposium on VLSI Design IDDI 4.3.7

feedback switching time. Increased stability and increased feedback switching time pro-

vide improved SEP protection. The 64K SRAM can use a lower valued resistor because

the memory cell is more stable than a typical SRAM. The lower valued resistor is more

manufacturable and is less affected by temperature. The polysilicon resistor process pro-

vides a tighter than typical control over the resistor value. This tight resistance control

provides greater SEP protection over a wider temperature range and also allows shorter

write times. Including a resistor in the memory cell increases the die size by less than 9%.

The cross-coupled resistors are incorporated in the single layer of polysilicon which also

forms the gates of the transistors. Metal contacts for power and ground are incorporated

in every cell to help collect some of the charge deposited by a particle passing through a
nearby junction.

The effect of the cross-coupled resistors is to increase the threshold LET for SEP upset

and reduce the effective saturated cross-section of the device. [9] These effects for UTMC's

64K SRAM are shown in figure 5 and 6. Using the LET threshold and effective cross-section

from these graphs, the error rate in errors/bit/day as a function of resistor value may be

calculated for any space environment using CREME or SpaceRad as described above. The

error rate at 125 C (worst case) for UTMC's 64K SRAM is shown in figure 7 as a function

of resistor value. By screening devices at the wafer level for resistor value and p-channel

drive current, we can guarantee an error rate of less than 1.0E-10 errors per bit per day at
125 C.

120

110

v
8Ot

> 7o

-o 50

m .
eo
_, 30--

_ 20

J

o
8O

_........._---,"_

Corr Coeff = 09939

100 120 14o 160 180 200 80 lOO 12o 140 16o

Resis(or Vofue (KOHM$) Resistor Volue (KOHMS)
......... Lineot t'it $ Ooto

LET Thtmlhold (@ 125' C) v_'_u= Resistor Vo_e (O 25" C)

180 200

Figure 5: LET Threshold vs. Resistor

Value
Figure 6: Error Rate vs. Resistor Value

6.2 SEP-Hardened Flip-Flop Design

In logic systems, storage nodes such as flip-flops must retain data reliably, or the integrity

of the logic system can be severely compromised. A SEP-induced upset of a single bit in a

microprocessor register can send the system into an irrecoverable state. Detection of these

types of errors can require substantial overhead in software and hardware complexity and



4.3.8

IF O_

i
!!!!!!!

IE-15

>' 1E-- 10

I

u) 1E- 12

C_

:D l[-I_

80 90 loo 11o 12o 13o 14o 15o
Resistor Value (KOHM$)

!it,sets per Rit Day (@ t25' C) _vrs,J:_ Res;slor Volue (@ 25' C, in p(l,-I_]e)

Figure 7: Error Rate vs. Resistor Value

CIk

N1 P3

o--D QD

P]T N3

NClk

TN:m'

Figure 8: Resistor Application in Flip-flop

is possible to substantially improve the SEP performance without introducing additional

processing complexity. However, there is usually a penalty in increased die b._ea.

If the wafer fabrication process technology has poly-resistors available (used for S EP_

h raening SRAM ce/ls described above), these resistors may be use_ to _ncrease _p-flop

hardness as shown in figure 8. This technique can result in some performance degradation

of the flip:itop over te_erature as reported by Sexton et al. [i0] if resistors are not avail-

able, circuit techniques, coupled with the simuiation techniques similar to those descr]lJed

above, can be used to develop flip-flop register cells which have improved SEP perforl_n_

over conventional fllp-flop circuits. [i1,12]

To determine the effectiveness of the simulation techniques described above, we sim-

ulated the SEP upset for a number of the flip-_0p cells in UTM_s gate-array _rary.

The simulations for one of these cells, DFAPCB - a D:type flip-flopwho.se!ogic diagram !s

shown in figure 9, was compared with experimental data from heavy ion tests performed at

Br0okhaven National Laboratory. To accuratcly determine the upset rate of the flip-flop,



3rd NASA Symposium on VLSI Design 1991 4.3.9

_:_:C 5 ¢'_BC-

VAo-- i
X X" 1 _ a

X X 0 1 ;

./" _ 1 ; 0

jr _ 1 1 1

o

a

o

QB

LOGIC DIAGRAM

3a

CB P8 NO2 _w

CK PB A_02 CKB Q

NO2

O_

C_

r_vl INVl CK_

C_.K_CK

Figure 9: D-type Flip-flop Logic Diagram

it was necessary to determine the effective critical charge (the charge required to upset the

state of the flip-flop) for every node within the circuit for both a high-node state and a

low-node state. The effective critical charge, along with the junction area for each node,

was then used to determine the upset rate for the node using the SpaceRad program. The

sum of the upset rates for all nodes was then taken as the upset rate for the flip-flop. The

simulated error rate for the DFAPCB flip-flop was 4.24E-8 errors per cell per day. This

compares to an experimentally determined error rate of 3.38E-8 errors per cell per day for

this flip-flop cell.

We have also developed SEP-upset improved cells which support our radiation-hard

gate array cell library. Some of the cells are capable of providing an error rate of 1.0E-

l0 errors per cell per day. Fully redundant cells have also been designed which require

twice as many transistors as a non-redundant design, but are SEP-immune. The results of

this work have provided a number of guidelines for selecting and designing an SEP-hard

flip-flop. These guidelines are discussed inTable 2.

7 Conclusions

Use of the simulation techniques described in this paper substantially increases the con-

fidence that a design will meet its objectives for SEP hardness, and the cell layout can

be optimized without compromising circuit performance. We have demonstrated an SEP

error rate less than 1.0E-10 errors/bit-day for a 90% worst-case geosynchronous orbit en-

vironment over the entire -55 C to +125 C temperature range for a rad-hard 64K SRAM



4.3.!0

Problem F1ip-F!op Design Approach

Minimize stacked

p-channel devices

Eliminate

transmission gates

Remove NOR gates and replace with NAND gates.

Remove transmission gates and replace with clocked

inverters.

Minimize sensitive Simplify design as much as possible consistent with

node area functional requirements. Add redundant (parallel)

tr.ansistors on sensitive nodes internal to the cell.

Table 2: Design Considerations for Improving SEP Hardness of Flip-Flops

while maintaining a less than 55 ns cycle time. We have also demonstrated the capability

to model the SEP error rate of gate array cells and have applied the simulation and design

techniques described in this paper to develop SEP-tolerant and SEP-hard flip-flop designs.

SE_lardness of integrated circuits cannot be assured-byscreening commercial devices,

or by normal system-level or logic-level design techniques. Good SEP hardness can only

be obtained by using a wafer fai_ric-afion- process w-l_icl_ provides the proper characteristics

and proper attention to good design practices at the transistor level. Since commercial

semiconductor manufacturers do not consider SEP effects wBen designing their circuits,

it will be necessary to develop custom circuits which are designed for SEP hardness four

mission-critical applications.

8 Acknowledgments ............

-'_he auth0rs would_ke to thank john Silver for providing valuable inputs to t=hispaper.

Referen ces - : .........

[1] TMA DAVINCI is a trademark of Technology Modeling Associates, Inc.

[2] J. J. Silver, Circuit Designs for Reliable Operation in Hazardous Environments,

NSREC Tutorial Short Course, July 1987 and references therein.

[3] A. Knudson, A. Campbell, Comparison of Experimental Charge Collection Waveforms

with PISCES Calculations, _Tran._ IVucl eeL, NS-38, I991. .....

[4] J. Rollins et al., Cost-Effective Numerical Simulation of SEU, IEEE Tran8 Nucl Sci.,

NS-35, 1988.

[5] J.H. Adams :Jr., R. Silberberg, and C. H. Tsao, Cosmic Ray Effects on Microelec-

tronics, NRL Memorandum Report H506, Naval Research Laboratory, Washington,

D.C.



3rd NASA Symposium on VLSI Design 1991 4.3.11

[8]

[9]

[10]

[11]

[12]

SpaceR.ad is a product of Space Radiation, Severn Communications Corp.

S. E. Diehl, et al., Error Analysis and Prevention of Cosmic Ion-Induced Soft Errors

in Static CMOS RAMs, IEEE Trans on Nucl Sci, Vol. NS-29, December 1982, page

2032.

L. AUes, K.L. Jones, J.E. Clark, J.C. Lee, W.F. Kraus, S.E. Kerns, L.W. Massengil,

Rad-Hard SOI/SRAM Design Using a Predictive SEU Device Model, Digest of Papers,

GOMAC, Vol. 16, 1990, page 443.

J.R. Adams, M. Barry, J. Silver, and P. Rudeck, Design, Simulation, and Evaluation

of a SEP-hard SRAM Memory Cell, RADECS, August 1991.

F.W. Sexton, et al., SEU Simulation and Testing of Resistor-Hardened D-Latches in

the SA-3300 Microprocessor NSREC, July 1991, to be published in IEEE Trans Nucl

Sci., 1991, and references therein.

S. E. Diehl, J. E. Vinson, B.D. Sharer, and T. M. Mnich, Considerations for Single

Event Immune VLSI Logic, IEEE Tran$ on Nucl Sci., Vol. NS-30, December 1983.

L.R. Rockett, Jr., An SEU-Hardened CMOS Data Latch Design, IEEE Trans NucI

Sci., Vol. 35, No. 6, December, 1988.





N94-18353

3rd NASA Symposium on VLSI Design 1991 5.1.1

Pulse-Firing
Winner-Take-All l etworks

Jack L. Meador

School of Electrical Engineering and Computer Science

Washington State University

Pullman WA, 99164-2752

Abstract- Winner-take-all (WTA) neural networks using pulse-firlng process-

ing elements are introduced. In the pulse-firlng WTA (PWTA) networks de-

scribed, input and activation signal shunting is controlled by one shared lat-

eral inhibition signal. This organization yields an O(n) area eomplexlty that is

convenient for integrated eireult implementation. Appropriately specified net-

work parameters allow for the accurate continuous evaluation of inputs using a

signal representation eompatlble with established pulse-firlng neural network
implementations.

1 Introduction

The winner-take-all (WTA) function plays a central role in competitive neural networks

and is related to recurrent on-center off-surround models of natural neural systems [1-3].

Although it can be realized sequentially via pairwise comparisons, the WTA operation is

more effectively realized in parallel analog circuits via a distributed network of processing

elements which compare relative input magnitudes and allow only that element with the

largest input (or "winner") to remain active. Parallel analog WTA realizations have been

described which use Hopfield Network dynamics [4], and MOS current conveyors [5,6].

The model introduced in this paper and its electronic implementation are more like a

WTA mechanism inspired by natural presynaptic inhibition feedback [7]. The new pulse-

firing WTA (PWTA) model employs a unique combination of a self-shunting feedback

term with output hysterisis to yield a WTA network compatible with asynchronous pulse-

firing neural network implementations described variously as impulse, pulse-stream, and
neural-type networks [8-10].

This paper first introduces asynchronous pulse firing processing units in Section 2.

These are the basic computational units used in PWTA networks. The mathematical

foundation of PWTA networks is then presented in Section 3 where the system dynamics

of a general PWTA network are developed. Section 4 continues with the presentation of

MOS circuit implementations. Section 5 closes with an analysis of finite circuit precision
effects.

2 Asynchronous Pulse Firing Processing Units

The dynamics of the pulse firing processing units used in a PWTA network obey the
following equations:



5.1,2

_ = -_v + • - (Zv+ • ± _)g(.), .(t0) = 0 (1)
y = g(_)

where v is unit activation, • is total unit input, y is unit output, and 9(.) is the binary

hysterisis function shown in Figure 1. As can be deduced from the figure g(v) includes as a

special case the simple threshold nonlinearity (when Va = V_h) although the specific pulse

firing dynamics described here would cease to exist in that situation. Throughout this

paper input x is assumed to be positive and time variant. The unit response to a constant

input is a train of regularly spaced constant width pulses. The larger the input signal

x,:the greater the output pulse repetition rate. The parameter a establishes a first-order

response to x during the input integration phase of operation as defined by the absence of

an output pulse (y = 0). That response is shifted to one defined by a + fl during the firing

phase, as defined by the presence of an output pulse (y = 1). Since x is shunted during the

output pulse period, processing element state asymptotically approaches • = "),/(o_ + j3).

Parameter _ uniformly scales all unit time constants. One pulse firing cycle is summarized

by the integration of the input signal until v reaches Vth, whereupon the switches toggle,

causing the discharge of v to min(e, Va). Oscillation is sustained provided • < Va.

1

_ --

vtl vth v
Figure !: Output hysterisis function

3 PWTA Network Dynamics

A PWTA network combines the unit dynamics described in (2) with lateral inhibition. Lat-

eral inhibition from a combination of unit outputs can be expressed in a form which yields

network state equations similar to those of the presynaptic inhibition model described by

Yuille and Grzywacz [7]:

toil, = -av, + x,F(V) - H(V) (2)



3rd NASA Symposium on VLSI Design 1991 5.1.3

where

and

F(V) = 1-Vg(vk)
k

H(V) = -/3)v, + "r + (/3,,,- 7)Vg(v,)
k

with V indicating the logical OR operation and V corresponding to the vector of unit

activations. F(V) is a binary value establishing the input inhibition which occurs while

any processing element generates a pulse. It is during this "output firing phase" of the

network that H(V) controls the processing elements such that a winning unit activation

decays at a different rate to a different equilibrium than that of a losing unit. The model

parameters allow for the independent adjustment of winning and losing unit decay rates

and asymptotes. Properly chosen parameter values guarantee WTA function independent

of initial system state without the need for external synchronization [11].

All units contribute to a shared lateral inhibition signal identically. The winning output

is indicated by the dominance of the first unit activation to reach Vth: since it establishes

the synchronized re-initialization of all units, it is the only one to fire. In general, the

winning unit is determined by a combination of initial network activation state and input

magnitude. With appropriately chosen parameters, however the reset state establishes

initial conditions which make the winning unit decision independent of initial state and

dependent exclusively upon the xi inputs.

For the winning unit to exactly correspond to the one having the largest input, it is

important that initial condition independence be maintained. To guarantee this indepen-

dence in the PWTA network described by (2) parameters are chosen such that all units

reset to an identical initial condition.

A11 activations in the PWTA of (2) will reset to near-identical initial states if parameters

are chosen such that v_ < Vtt, v_ = Va and/3 << A [11]. During the output firing phase,

these values cause the losing units to approach Vtt well before the winning unit does. When

the winning unit reaches Va, it terminates the output firing phase and all activations cease

to decay. Theoretically, the losing units only asymptotically converge to Va while the

winning unit converges via a truncated exponential. Even though this is mathematically

imprecise, in a practical sense it can be assumed that/3 is chosen large enough with respect

to A for losing units to converge to within the limits o£ finite precision hardware well before

the firing phase ends.

A geometric interpretation of ideal PWTA network operation with constant inputs is

illustrated in Figure 2. Each loop in the state diagram corresponds to one firing cycle.

Unit activations are reset to Vtt at state So in the diagram. The input integration phase (1

and 3 in the figure) begins at So and terminates when the Vth threshold is reached. That

is followed by the output firing phase (2 and 4 in the figure) during which unit activations



5.1.4
• . winning

unit j wins boundary
i r'

"'""" unit i wins2

I tJflIJ _

So

Figure 2: Ideal PWTA network operation

decay.::ia the iig-ure, tra]ectory i-2 corresponds to the path followed when unit j _s,

and trajectory 3-4 to when unit i wins. Which unit wins is determined by the one which

first reaches Vth. That in turn is determined by the state trajectory during the input

integration phase. With constant inputs, that trajectory is linear with slope proportional

to the quotient of the input signal magnitudes. A "winning boundary" for constant inputs

can be identified by unit slope (dashed line in the figure). This geometric interpretation

of PWTA operation will prove useful in a later discussion of finite precision effects.

Figure 3 illustrates the operation of a 2-unit PWTA network in response to a smooth

transition between two inputs. In this example, input signals zl and z2 move from 0 to 1

and from 1 to 0 respectively, crossing at t=10. The parameters chosen for this simulation

are Vu = 1, Vth = 4, _¢ = 0.1 a = 0.1, _ = 1.2, 7 = 1.3, and A = 0.6. The activation state

space diagram for this simulation is shown in Figure 4. It can be seen how the reset state

with these parameters assures input order preservation.

4 CMOS Circuit implementation

By way of introduction to the CMOS PWTA network, a CMOS implementation of a

pulse firing processing element shall first be considered. Figure 5 shows the circuit for

an impulse neural circuit as described previously in [8]. For simplicity, 7 = 0, and a is

for practical purposes nonexistent by virtue of the low leakage currents exhibited in MOS

technology. C_ includes not only the ideal capacitance of a poly-1 capacitor, but also

stray wiring capacitance and the input capacitance exhibited by the Schmitt trigger G.

The Schmitt trigger provides high voltage gain at the threshold voltages Vu and Vth, with

positive feedback from the output establishing the active threshold. The Schmitt trigger

output can be expressed in terms of the hysterisis function g of (2) as G(v) = VnDg(v).

corresponds to the channel conductance of M2 which operates in the active region when

an output pulse is generated. Further details regarding the operation of this circuit are



3rd NASA Symposium on VLSI Design 1991 5.1.5

I

0.8

0.6

0.4

0.2

0 i

6 s _o 12 x_ l_ ;8
[

20

>

4/1 A A /1 _ _ ,_ ,! ,!

2 ...__j..__l ,w i p i i i , )

00----3 i 6 _ z; f2 ii l; l_ 20
t

1

>.
0.5

0
0

lt l
2

,, , , ___ J _ ,._

4 6 8 10 12 14 16 18 20

!

Figure 3: Inputs, state variables and output of a 2-unit PWTA network

4 .............. t

3.5

2

1.5

1

0.5

0
0

I t

1 2 3 5

Figure 4: State trajectory of a 2-unit PWTA network simulation



5.1.6

I

v M2

7

c(v)

Figure 5: CMOS implemantation of a pulse firing processing unit

provided in [8].

A CMOS implementation of a PWTA cell is shown in Figure 6. The basic elements of

the CMOS impulse circuit are augmented by additional MOSFETs which establish various

parameters associated with the ideal model. Variations of this circuit having reduced

transistor counts are also possible [11]. The circuit of Figure 6 simply represents the most

general CMOS PWTA implementation consistent with the Equation (3) definition.

Two local signals and one global signal control circuit operation in accordance with

current network state. The local signals Gi and G-"_'indicate that unit i is the winning unit

when Gi = VOD and G---'i'= 0V. These signals select the local firing response. Both the

true and complemented global lateral inhibition signal F and F are derived by a pseudo-

NMOS NOR gate and a CMOS inverter consisting of transistors Mll through M14 in the

diagram. These signals are distributed on two wires between all cells of the WTA network.

NoR puUdown transistors (Mll) are distributed across all cells while there need only exist

a single puUup transistor (M12) and single inverter (M13, M14). When any unit in the

network initiates a pulse, F becomes active, causing all units to enter the output firing

phase.

Transistor M1 disconnects input current zi during the output firing phase, causing it

to be shunted into the parallel capacitance of some input circuit (not shown - see [8] for

further details). Also during the firing phase, transistors M2, M7, M6, and M10 conduct,

allowing some combination of the currents I1 through 14 to flow.

The circuit branch consisting of M2 through M4 establishes a current which corresponds

to the constant 11 = 7. Similarly, branch M7 through M9 establishes a constant current

corresponding to 13 -- _. Ignoring the nonlinear component of channel conductance, the

branch consisting of transistor M10 establishes a current corresponding to I4 = )_vi and

the M5, M6 branch a current analogous to (/3 - ),)vi. As with the circuit of Figure 5, a is

assumed to be negligible.

During the output phase, the signals G and overlineG control the unit response. If

the unit is a winner, then G = VDD, -G = OV, and branch currents/3 and/4 are allowed



3rd NASA Symposium on VLSI Design 1991 5.1.7

to flow. This establishes a winning unit response where the unit activation asymptotically

decays to (/)_, but is truncated at Vtt when the winning unit terminates the output firing

phase. If the unit is a loser, then G = 0V, G = VDO, and branch currents /1, 12, and

13 are allowed to flow. This establishes a losing unit response, where the unit activation

asymptotically approaches Vii at a much faster rate than it would otherwise as the winning
unit.

5 Finite Precision Effects

Thus far, the effects of finite parameter precision have been ignored. Intra-cell parameter

variation will contribute to deviations from the ideM performance previously described.

This section focuses upon the parametric variations which will have the greatest effect

upon PWTA performance that also are the most likely to occur in contemporary CMOS
fabrication processes.

The overall function of a PWTA network is to select the input signal having the greatest

magnitude. Inspection of Figure 2 reveals that there are two potential error sources which

can interfere with that function. These are errors in the determination of the initial

network state, So and deviations in the position of the winning boundary. These variations

effectively give an unfMr advantage to some processing units, sometimes allowing units to

fire even thought their inputs are not necessarily the largest. Fortunately, it can be shown

that this occurs only when two inputs have very nearly the same magnitude. Units having

input signals which are "clearly" not the largest will remain quiescent. The definition of

"clearly" is expressed as a hysterisis deadband which naturally occurs around the winning

boundary. This hysterisis arises directly from parametric variation.

For the remainder of this section only constant inputs will be considered. This allows

for the analysis of parameter precision effects while the network is in a steady-state op-

erating condition. Figure 2 illustrates network operation under ideal conditions when the

critical parameters Vtt, Vth, _;, 7 and/5 are assumed identical across all units. Under these

conditions, unit i wins if

d_) i

> 1 (14)

with unit j winning otherwise. _ - 1 corresponds to the ideal winning boundarydvj --

(dashed line) of Figure 2.

Variations in the scaling constant _ yield an inaccurate winning boundary definition.

,_ is determined in the CMOS implementation by the MOS capacitor C_ in the previous

circuit diagram. Variations in capacitor geometry will lead to inter-unit ,_ variation and

subsequently give those units having a smaller ,_ an advantage in the race toward Vth.
Recognizing that

d'u i t_i{) i

dv- - (15)



5.1.8

yields the decision rule that unit i wins if

dvi _j (16)
dvj > --t£ i

This rule reduces to the ideal one of (14) when _i = _i Although all units are initialized

to the same state at So, the decision boundary is shifted such that one unit is favored over

another.

Variation of C_ alone leads to finite precision for the winning boundary. Parameter

variations which affect the initial network state and the unit firing thresholds lead to more

complex hysterlsis effects at the winning boundary. Firing thresholds, as defined by Vth

in the Schmitt trigger are typically determined by device geometries. The initial network

state is determined in part by Va which is also dependent upon Schmitt device geometries.

The other part of initial network state is determined by the geometries of M2-M6 and

M10 of Figure 6 (corresponding to fl, 7 and ), in the ideal equations). Not only do such

variations Change the slope of the winning boundary, but the slope is also dependent upon

the winning unit as well. Under these conditions, the current winner is favored by the initial

states such that a new winner must have a significantly larger input than the present one.

These effects can be used to extend the decision rule expressed by (16) to one where unit

i wins if

dvi nj Vth_ - Vai (17)-->
dvj ai Vthj -- Yoj

where V01 and V0j are determined by the combined variations of M2-M6 and M10

between units i and j. It can be easily verified that this decision rule reduces to the ideal

case when there is no inter-unit variation. The effect this has on overall PWTA function

is to introduce a hysterisis deadband which only affects close decisions.

6 Conclusion

An ideal linear model has been used to establish a general basis for PWTA function.

This model improves an earlier one based upon presynaptic inhibition in two ways. The

new model uses O(n) interconnect for lateral inhibition and does not require an external

reset signal since it is fully asynchronous. Furthermore, it provides information regarding

how strong a winning input is - a feature not always found in winner-take-all networks.

Model parameters can be chosen to guarantee ideal winner-take-all function given precise

parameter specifications. The model is also fully compatible with previously established

asynchronous pulse firing analog neural !Cs.
CMOS PWTA circuits have also been presented. These circuits necessarily deviate

from the ideal linear model, but they can be designed to exhibit similar behavior simply

by accounting for the nonlinear characteristics of the electronic devices they employ. Non-

ideal effects arising from practical implementation considerations have also been addressed.



3rd NASA Symposium on VLSI Design 1991 5.1.9

z

_-'M2 "_'M7

lk

M4

_!_%I1

___ /2Jl_M 5 14_

MIO

]L
7

p,.. a(v)

I,/ Ml11_

I
other units _1

Figure 6: A genral CMOS PWTA cell

Parametric variation between pulse-firlng processing units leads to a finite decision accu-

racy and the potential existence of a hysterisis deadband.

References

[1] J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Compu-

tation, 217-228, Addison Wesley, 1991.

[2] S. Grossberg, Contour Enhancement, Short Term Memory, and Constancies in Re-

verberating Neural Networks, Studies in Applied Mathematics, Vol. 12, 213-257, MIT

Press, 1973.

[3] S. Grossberg, Nonlinear Neural Networks: Principles, Mechanisms, and Architectures,

Neural NetworkJ, Vol. 1, 17-61, Pergamon Press, 1988.

[4] E. Majani, R. Erlanson, and Y. Abu-Mostafa, On The K-Winners-Take-All Network,

Progress in Neural In/ormation Processing Coystems, Vol. 1, 635-642, Morgan Kauf-

man, 1988.

[5] J. Lazzaro, et al., Winner-Take-All Networks of O(n) Complexity, Progress in Neural

Information Processing Systems, Vol. 1,703-711, Morgan Kaufman, 1988.



5.1.10

[6] A. Andreou, et al., Current-Mode Subthreshold MOS Circuits for Analog VLSI Neural

Systems, IEEE __ans. on Neural Networks, Vol. 2, 205'213, IEEE Press, 1991.

[7] A. L. YuiUe, arid N. Grzywacz, A Winner-T_ke-A_ Mechanism Based on Presynaptic

Inhibition Feedback, Neural Computation, Vol. I, 335-347, M!T Press, 1989.

[s] J. Meador, et al., Programmable impulse Neural Circuits, IEEE Trans. on Neural

Networks, Voi. 2, 10LI09;=IEEE Press, i991=_= =

[9] A. F. Murray, et al., Pulse-Stream VLSI Neural Networks Mixing Analog and Digital

Techniques, IEEE Trans. on Neural Networks, Vol. 2, 193-204, IEEE Press, !99!.

.... ".......... _ _ ......... Proc. IEEE[10] G. Moon, et al., An_ys]s and Operation of a _eural-_ype Cell (NTC),

ISCAS, pp. 2332-2334, IEEE Press, 1991.

[11] J. Meador, Pulse Firing Winner-Take-All Networks, Internal Manuscript, School of

Electrical Engineering and Computer Science, Washington State University, Pullman
WA., June, 199!.

:3:: : . _ : ? : ....... (



3rd NASA Symposium on VLSI Design 1991

N94-

Training Product Unit Neural Networks
with Genetic Algorithms

D. J. Janson and J. F. Frenzel

Department of Electrical Engineering

email: jff@k2.ee.uidaho.edu

email: djanson @bashful.ee.uidaho.edu

and D. C. Thelen

Microelectronics Research Center

emaih dthelenQgranite.mrc.uidaho.edu

University of Idaho, Moscow, Idaho 83843

Abstract- This paper discusses the training of product neural networks using ge-

netic algorithms. Two unusual neural network techniques are combined; prod-

uct units are employed instead of the traditional summing units and genetic

algorithms train the network rather than backpropagation. As an example_

a neural network is trained to calculate the optimum width of transistors in

a CMOS switch. It is shown how local minima affect the performance of a

genetic algorithm, and one method of overcoming this is presented.

i Introduction

Neural networks have been applied successfully to many problems in recent years. Tradi-

tionally these networks are composed of multiple layers of summation units. These simple

units sum their inputs, each input multiplied by a variable weight. This summation is

usually then squashed by a non-linear equation such as the logistic function. Several re-

searchers have shown that networks composed of these units can calculate any function to

any arbitrary degree of accuracy given enough summation units. [1] However, there are

many functions that are complicated enough that the number of summation units it takes

to duplicate them are prohibitive. One very commonly found task is that of higher order

combinations of the inputs such as either X * X or X * Y.

One proposed solution is a new unit called the "sigma-pi unit" [3]. This unit not only

applies a weight to each input, but also applies a weight to the second and possibly higher

order products of the inputs. While much more powerful than the traditional summation

unit, the number of weights increase very rapidly with the number of inputs, and soon

become unmanageable when applied to solving large problems. Since most problems only

need one, or at most a few, of these terms, the sigma-pi unit is overkill.

1.1 Product Units

A suitable alternative was introduced by Durbin and Rumelhart [2]. The "product unit"

computes the product of its inputs, each raised to a variable power. This is shown in



5.2.2

(0 (b)

(
=

(

(

)

Equation 1,

Figure 1: Recommended product network configurations [4]

N

y- II x(i),'¢') (1)
i-_ l .........................

The p(i) term is treated in the same way as the variable weights for summation units.

Using the modified version of backpropagation presented by Durbin and Rumelhart, these

product units can provide much more generality than sigma-pi units. While a sigma-pi

unit is constrained to using just polynomla] terms, the product units can use fractional

and even negative terms. As Durbin andi_umelhart point out, productu_tsc_-actu_lly

be considered a superset of sigma-pi units; for if several of the product units are used, and

they are constrained to only integer values, they would have the same results.

There are many ways that productunits can be usedin a network_ However__ the

overheadrequired to raise an arbitrary base to an arbitrary power makes-it unlikely tha_t

th_ will replace su_m_at_0n units. Durbin and Rumelhart propose that the primar_r iise

of the product units will be to supplement the power of the summation units. Two pro-

posed architectures are shown in Figu_re 1. The term product neural networks (or product

networks) will be -Used to refer to netw0rl_s c0n_nY1ng_ooth iJr0-duct and summati0_s.

While product unitsincrease the capability ofaneural network, theyalso add compli-

cations. Not only is backpropagation harder to accomplish, but the solution space becomes

_more convoluted. As Durbin and Rumelhart pointed out, there are often local _minima that

trap the network. As a possible solution to this problem this paper investigates the use

oi'_g-6nehc algontiams to traan product networks.

2 Genetic Algorithms

2.1 Introduction

A genetic algorithm (GA) is an exploratory procedure that is able to locate near-optimal

solutions to complex problems. To do this, it maintains a set (called a population) of trial

solutions (called chromosomes). Through a repeated four-step process, these chromosomes
z

E



3rd NASA Symposium on VLSI Design 1991 5.2.3

evolve until an acceptable solution is found. These steps are evaluation, reproduction,

breeding, and mutation. A representation for possible solutions must first be developed.

Then, with an initial random population, the GA is able to solve the problem almost

without regard to the interpretation of the chromosome. Each generation, the chromosomes

produced, through survival-of-the-fittest and exploitation of old knowledge in the gene

pool, should have an improved ability to solve the problem.

There were two primary reasons why GAs were applied to training product networks.

First was that the addition of product nodes made the solution space more complicated.

Because backpropagation is a gradient decent Mgorithm, it is very likely to get caught

in a local minimum. The second reason was that backpropagation tends to be slow with

complicated problems. It often takes many iterations to train a complicated network. It is

hoped that the use of a GA will find the best answer much faster than backpropagation.

2.2 Representation

Before applying a genetic algorithm to any task, a representation for possible solutions

must be found. The most common method for representing these possible solutions is with

a bit string. Higher order strings (such as character strings) or trees (such as binary trees)

have also been used. Since the architecture of the product networks to be trained will

be known, a binary string representation with a fixed number of bits per weight can be

constructed. Thus, each weight in the network has a certain number of bits associated with

it. This representation permits each chromosome to be decoded easily, while still allowing

each weight a large degree of freedom. The typical generation used had between 30 to 100

members in a population, with 16 bits representing a weight.

2.3 Evaluation

The first step in any generation is the evaluation of the current chromosomes. This is the

only step where the interpretation of the chromosome is used. Each chromosome in the

population is decoded, and the result is used to solve the original problem. This solution

is then graded on how well it solved the problem. The method used to grade product

networks is to calculate the sum of squared error (SSE) for the training set. The fitness of

the chromosome is equal to 1/(1 + SSE). This means that the better a network performs,

the higher its fitness, with a perfect network having a fitness of 1.

2.4 Reproduction

The next step in a generation is to create a new population based upon the evaluation

of the previous one. Every chromosome generates a specific number of copies of itself,

based on how well it solved the problem. Thus the chromosomes that performed better

will produce several copies of themselves, while the worst chromosomes won't produce

any copies. This is the step that allows GAs to take advantage of a survival-of-the-fittest

strategy.



5.2.4

There are several methods to calculate the number of offspring that each chromosome

will have. One of the more prevalent methods is called ratioing. With ratioing, each

chromosome produces a number of offspring directly related to its fitness, with the only

restriction being that the total number of chromosomes per generation remains constant.

Thus, if one chromosome has a fitness that is twice that of another, then the superior chro-

mosome would produce twice as many offspring. However, there are two major problems

with this method. First, if all the chromosomes have similar fitness, each member in the

population will produce one offspring. This results in little pressure toward improving the

solution. The second problem, although from a different source, has the same effect. If any

one chromosome should happen to have a fitness much larger than any of the others, then

that chromosome would create most, if not all of the new offspring. This discriminates

against the remaining information of the gene pool in favor of this super-chromosome, loos-

ing the information in the gene-pool. This particular type of stagnation has been labeled

premature convergence.

The method the author used to train the product networks is ranking [5]. In ranking_

the whole population is sorted by fitness. The number of offspring each chromosome will

generate is then determined by where it falls in the population. The ranking algorithm

used was that the top 30_ of the population generated two offspring each, the bottom

30_ of the population generated no offspring, and the rest of the population each gener-

ated one offspring. In this way, no one chromosome can overpower the population in a

single generation, and no matter how close the actual fitness values are, there is always

constant pressure to improve. While the problem of premature convergence still exists, it

is greatly reduced by _0w!n_ othe r chromosomes a chance to mix information with high

fitness chromosomes. The disadvantage of using ranking is speed. In not allowing better

chromosomes to guide the population easily, good answers are slower to develop.

2.5 Breeding

The previous step, reproduct!on, created a population wh0se members currently best solve

the problem. However, many of the chromosomes are identical and none are different than

those in the previous generation. Breeding combines chromosomes from the population

and produces new chromosomes that, while they did not exist in the previous generation,

maintain the same gene pool. In natural evolution, breeding and reproduction are the

same step, but in GAs they have been sepa_rated to allow different methods fo_ each to be

experimented withand independently evkluated. It is in this step where GAs can exploit

knowledge of the gene pool by allowing good chromosomes to combine wit h chromosomes

that aren't as good. This is based on the assumption that each individual, no matter how

good it is, doesn't contain the answer to the problem. The answer is contained in the

population as a whole, and only by combining chromosomes will the correct answer be

found.

There are many methods used for breeding; with the most common being crossover.

Crossover typically takes two chromosomes and swaps parts of each to create two new

chromosomes. Many variations on crossover have been used, but no results have shown

w



3rd NASA Symposium on VLSI Design 1991 5.2.5

before after

001100 000010

110011 111101

T T T T

Figure 2: Example of two-point crossover (crossover points indicated by arrows)

which is decisively better. The crossover the author used to train the product networks was

a simple two-point crossover. Two random points are chosen in the chromosome, and the

bitstring between the two points is swapped between the two chromosomes. An example

is shown in Figure 2.

2.6 Mutation

The last step in creating a new generation is based on the assumption that while each

generation is better than the previous, the individuals that die may have some information

that is essential to the solution. It is also possible that the initial population didn't have

all the necessary information. The reinjection of information into the population is called

mutation. Again, there are many ways to implement mutation, but essentially all choose

and change members of the population randomly.

The method the author used was to simply inject a constant number of mutations every

generation. The number of mutations used was approximately 0.25% of the total number

of bits in the entire population. These mutations where then randomly distributed among

all the bits, with each bit having the same chance of mutating. A mutation involved a

50/50 chance of setting the bit to a 1 or 0, in effect giving the mutated bit a 50/50 chance

of changing. This means that any specific chromosome may or may not mutate, with a

small chance that it could severely mutate.

2.7 An Application

A product network was trained that calculates the optimum width of the transistors in

a CMOS switch given temperature, power supply voltage, and minimum conductance as

inputs. While there are many excellent analysis tools available, such as circuit simulators,

there are almost no software packages available that transform performance specifications

into a circuit schematic. This network is designed as an aid to CMOS circuit designers,

and was first proposed by Thelen in [4].

The data used to train the network was extracted from several SPICE simulations with

differing transistor dimensions, temperatures, and power supply voltages. In the training

set created from this data, the voltages ranged from 3 to 12 volts, the temperature from

303 to 403 °K, and the transistor width from 2 to 20 micrometers. Using these inputs,

the conductance could range from approximately 1 to 500 micro-mhos. Two hundred data

points were collected and a sample from these points is shown in Table 1.



5.2.6

Voltage Temperature (°K)

303

303

303

303

303

303

303

303

Conductance

1.026E-6

3.806E-6

6.593E-6

1.204E-5

1.752E-5

2.851E-5

3.951E-5

6.152E-5

Desired Width

2

3

4

6

8

12

16

24

Table 1: Sample from the data points used to train the network

+1 - "

_ outPut

/-I number lines have constant weights

: t _ ._

Figure 3" The product neurM network trained to select the width of a CMOS switch

The configuration of the product network was designed by Thelen using a pri.or_ iu_o_r-

mat;0n about--the equations to modela: _M_S=switch. The Iay0ut of the network is shown

3 Results .......

The first attempts at training the product network had very consistent, but wrong, results.

Through many runs of the GA, every solution represented a network that gave outputs of

approximately ten for tt_e transistor width, with no regard for the input.

The first success came when the population was seeded with an appro_xlma.tion to the

solution. _This_aPl_ro-_ima_tion was derived by a curve- fitting program-uslng the training

data. When seeded, the GA was able to quickly improve the approximation and find a

_m



3rd NASA Symposium on VLSI Design 1991 5.2.7

network that gave the desired output. While seeding did indeed allow an answer to be

found, it was desired that the GA could find an answer using an initial random population.

Better success was found using a penalty function. Penalty functions decrease the

fitness of a chromosome by adding constrictions to the solution. The penalty subtracted

from the fitness of a chromosome dependent upon how close the output of two consecutive

data points were. The closer the two outputs for the two points were, the larger the

penalty. With the addition of this penalty function, the GA was able to find a solution for

the network given an initial random solution.

4 Discussion

The initial results were very surprising. The inability of the GA to find an appropriate

solution meant that either the network could not solve the problem, or that the real

solution to the problem was extremely diËficult to find. Previous work by Thelan showed

that indeed a solution to this problem did exist. This meant that the real solution must

be diffficult for the GA to find. In fact, when seeding the GA with approximate solutions,

an answer was found.

There are three ways to make a problem difficult for a GA to solve. Either the solution

space is extremely convoluted, the best solution occupies a very small portion of the

solution space, or the solution space is misleading to a GA. Since proving whether a GA

is being mislead is very difficult, the other two possibilities where considered. Comparing

the solutions found by the GA showed that they converged to the same answer each time.

Thus, the solution space was not too convoluted for the GA to search.

The correct solution was not found with an initial random population. However, it was

found with the insertion of the penalty function. (The effect of the penalty function was

to place a pole in the middle of the unwanted solution, thus allowing the GA to continue

searching the space, and find the correct solution.) This leads the authors to believe that

the right answer occupied a very small portion of the solution space, allowing the GA to

more easily find the undesired answer.

This example points out one common problem with GAs. In using GAs, often the solu-

tion space is not very well known, and suboptimal answers can often dominate the solution

space. Indeed, if the problem to be solved is incorrectly or incompletely represented, the

GA will take advantage of these mistakes, and produce wrong answers.

5 Conclusion

It has been shown that product networks can be successfully trained with Genetic Al-

gorithms. A product network has been trained to give the width of CMOS switch, given

power supply voltage, temperature and minimum conductance specifications for the switch.

Further research will be done to compare the use of GAs to backpropagation in product

networks. Also, the capabilities of product networks will be compared to traditional neu-

ral networks. While product units have been shown to have superior capabilities over



5.2.8

traditional summation units, almost no studies to compare different networks have been
done.

References

[1] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient.

Technical report, Department of Computer Science, Tufts university, "lVIe_ord, MA,
1989.

[2] R. Durbin and D. Rummelhart. Product units: A computationalIy powerful and bi-

ologically plausible extension to backpropagation networks. Neural Computation, VoI

1, pages 133 - 142, 1989.
: := ±

[3] D.E. Rumelhart, G.E. Hinton, and J.L. McClelland. Parallel Distributed Processing 1,

Chapter 8: Learning Internal Representat_0ns by Error Propagation, pages 318 - 362.

Cambridge, MA, and London: MIT Press, 1986.

[4] D. Thelen. A neural network for designing CMOS switches: an application for prod-

uct units. In JWSUUIISCNU '91: Proceedings o.f the 1991 Joint WSU/UI Interstate

Student Conference on Neural Computation, pages 100 - 109. :lack Medor, EE Dept,

Washington State Universlty, April i99t.

[5] D. Whitiey. _eiechve pressure and ranked based allocation. In Proceedings of the Third

International Conference on Genetic Algorithms, pages 116 - 123. Lawrence Erlbaum

Associates, Inc., Hillsdale NJ, 1989.
. :7: ::: :,:::: Z: ; ::- :: . : :? : "

This research was supported by NASA under Space Engineering Research Center Grant NAGW-
1406

E



3rd NASA Symposium on VLSI Design 1991

N94-13355
5.3.1

VLSI Synthesis of Digital
Application Specific Neural Networks

Grant Beagles

Department of Electrical Engineering

Montana State University

Bozeman, Montana 59717

Kel Winters

Advanced Hardware Architectures, Inc.

Moscow, Idaho 83843

Abstract- Neural networks tend tofall into two general categories, 1) software

simulations, or 2) custom hardware that must be trained. The scope of this

project is the merger of these two classifications into a system whereby a

software model of a network is trained to perform a specific task and the

results used to synthesize a standard cell realization of the network using

automated tools.

1 Introduction

Neural net research may be roughly classified into two general categories; software

simulations or programmable neural hardware [2,6].

Many neural network simulators are readily available. The major drawback to all of

them is that, no matter how well written, they are run on a sequential machine. This means

that the software must simulate the parallelism of the network and slows down dramatically

as the number of connections increases [113].

Hardware neural networks are usually general purpose and must be trained.

Depending on the training, a significant percentage of the total hardware resources may be

unused. By defining the network with a software model and then sylnt_esizing the network

from that model, all of the silicon area will be utilized. This should result in a significant

reduction in die size when comparing the application specific version to a general purpose

neural network capable of being trained to perform the same task.



5.3.2

2 Network Modeling

The simulator that is being used for this project is version 2.01 of NETS written by Paul T.

Baffes of the Software Technology Branch of the Lyndon B. Johnson Space Center [3]. This

simulator was chosen for several reasons. NETS has a flexible network description format,

the source code is available, and the weight matrix may be stored in an ASCII file for easy

use in later steps.

As a first design effort, a simple numeral recognition network with three layers and

37 neurons was defined. The network consists of a 5 by 6 input layer, one hidden layer that

is also 5 by 6, and a 1 by 7 output layer. This network is fully connected. Figure 1 contains

the NETS description of the network.

LAYER : 0 --INPUT LAYER

NODES : 30

X-DIMENSION : 5

Y-DIMENSION- 6

TARGET-2 : : :

LAYER • 1 --OUTPUT LAYER; ............ -

NODES - 7

X-DIMENSION : 1

Y-DIMENSION • 7

LAYER : 2 --FIRST HIDDEN LAYER

NODES : 30

X-DIMENSION : 5

Y-DIMENSION : 6

TARGET : 1

NETS description of neural network

Figt__re !:

A training set consisting of ten digits (0 through 9) and the corresponding ASCII values_ is

used to _uiId the network wei_-ting matrix. Figure 2 illusti-ates _a Typical C_haracter

representation and its corresponding input/output vector. The network training set does not

include any noisy or corrupted data to simplify the model. Training the network required 100

iterations and was completed in about 6 minutes. The fully connected network has 1!10

connections. The weights in the weight matrix range between +_1.7 following training.

L

L



3rd NASA Symposium on VLSI Design 1991 5.3.3

Once the network is trained, the number of connections is reduced.

all weights having an

absolute value less than

a specified value to zero

(no connect). This

process is easily

automated allowing

various cut off values to

be evaluated. The

modified weight matrix

is evaluated using

NETS to determine

whether or not the

network will still

satisfactorily perform its

designed task.

This is done by setting

(.1.g.g.g.1

.9.1.1.1.g

.1.9.9.9.1

.9.1.1.1.9

.9.1.1.1.9

.l.g.g.9.1
011 lO00b .1.9.9.9.1.1.1)

Cham_r Inpu_ut _or
w/ASCII code

Example of training set element.
Figure 2.

Table 1 is a summarizes the results of reducing the network.

CUT-OFF NUMBER OF SATISFACTORY THRESHOLD 1

VALUE CONNECTIONS PERFORMANCE

0.3 688 yes 0.5

0.4 530 yes 0.5

0.5 413 yes 0.5

0.55 344 yes 0.5

0.6 288 no ....

Any value > threshold is a "one" otherwise "zero".

Table 1.

The actual cut-off values tested ranged up to 1, however, all results with a cut-off above 0.55

were inconsistent with the desired results. Figure 3 is the test vector for the character shown

in figure 2 with its associated output vector. (The cut-off is 0.55 and the threshold is 0.5.)



5.3.4

-- test set formin.net

(.1.9.9.9.1-- "8"

.9.1.1.1.9

.1 .9.9.9.1

.9.1.1.1.9

.9 .i .i .i .9

.i .9 .9.9 :i)::: !

Outputs for Input 8:

( 0.002 0.846 0.994 0.865 0:036 0.257 0.164)

Output vector for test vector from figure 2.

Fibre 3.

With the threshold value taken into consideration the output is 0il

code for "8".

1000, which is the ASCII

- = ==_ ..........

3 Logic Synthesis :

T_e inten{:oft_e neural network synthesis process is to provide a fully automatic path to

silicon realization once a network model has been constructed and verified in the NE_

environment. The entire synthesis process is schematically shown in fi_re 4. The OCT tool

set from the university of California, Berkeley [8], was chosen for the back end of this

procedure, which includes Io_c Optim{zat{on, technology mapping, standard-cell place-and-

route,and composite artwork assembly and verification.



3rd NASA Symposium on VLSI Design 1991

Define aArh_c_tJon _ftware Ma_ing i

NETSAI_el Phase :1

Connections'

no

_Use Verified Network I

no

5.3.5

Application specific neural network synthesis process.
Figure 4.

First, the completed neural network topology is translated from the NETS environment to

the OCT hardware description language BDS by a NETS-to-OCT program written for this

purpose. A simple example of a single neuron in NETS netlist and the corresponding BDS

description are shown in figure 5. The BDS file is then compiled into unminimized logic



5.3.8

functions by the OCT tool Bdsyn. These are mapped into a Standard cell library by MisII.

Currently, the SCMOS2.2 standard-cell library from Mississippi State University is used,

implemehted in the SCMOS6 N-Well CMO s p_ocess available from the National Science

Foundation MOSlS program. This process has a minimum feature size of two microns.

z=

LAYER : D--INPUT LAYER

NODES i

TARGET: 1 =:_ =_ =

=

LAYER : I--O_PUT LAYER

NODES : 1 .....

Majority logic NETS description.

MODEL dumb

out<0>,sum0<4:0>=in<4:0>;

ROUTINE dumbnet;

target layer _ () no_]e _ _0

sum0<4:0> =

+ in0<0>

+ in0<l>

+ in0<2>

- in0<4>

iF sum0<4> EQL 1

THEN oUt<0> = 1

ELSE out<0> = :0;

ENDROUTINE;

ENDMODEL;

Majority logic BDS description.

Figure 5.

MisII is an n-level logic optimizer, which creates a realization of a logic function from a given

ceil I_rary minimizing both wo_rst-case propagation delay and the number of cells required.

The relative priority of area versus speed is user selectable. The result is stored in the OCT



3rd NASA Symposium on VLSI Design 1991 5.3.7

database and may be verified with MUSA, a multilevel simulator in the OCT suite. From

here, the design process may be easily iterated from the NETS description forward as shown

in figure 4.

A number of additional OCT tools are available for padring composition, composite

placement and channel routing, power distribution routing, and artwork verification.

Artwork may be generated from the OCT database in Caltech Intermediate Format (CIF)

for release to MOSIS or other foundry services.

The standard-cell realization of the digit recognizer described previously is shown in

figure 6. Its 37 neurons required 2741 standard cells in 47 square millimeters.

Standard cell realization of character recognizer.

Figure 6.



5.3.8

4 Conclusions and Future Directions

Figure 7 s.hows a block diagram of a 5 input programmable neuron. To build the digit

recognizer using this generic neuron would require about 45 neurons. The actual network

has 37 neurons. The increased number of generic neurons is clue to the five input limitation.

Many of the nodes in the network have more than five inputs. With the generic neurons,

multiple neural cells would be connected at the outputs giving the behavior characteristics

of a neuron having a larger number of inputs. The number of standard cells required for the

entire network realized with the generic 5 input neuron is approximately 8280 (-45 neurons

by 184 standard cells per neuron [7]). This network would cover nearly 141 square
millimeters.

synaPtic-Weight:-:::
flip flops

T T ? ? : ::::
neural_ :i :_:: :

" ..... - Thresnold :

4¢
Output
flip flop _:.=_: ::_._--::,. =::_;....

Generic five iniitit iaeuraYc_-:-: : :::=

Figure 7.

As stated previously, the network created with the methodoIogy_eescribed here requires 2741

standard cells and 47 square millimeters. This represents a 66% reduction in the number

of cells used and silicon area. This reduction -_ii allow the chip to be fabricated at a

significantly lower cost than a chip with a sufficient number of the g_eneric neurons.

Furthermore, all-o_tl_e sili_6ii _ area ir_-t-_ application specifi(_ea-_s utilized whereas_-a

significant percentage is unused in the general model. These results are very preIiminary.

Experiments with s_mpier models suggest that su]istanti-ai improvements ill standard ce]i

optimization remain p_ossi_ble: ........ ...........

The models used in this research were trainedtising ideal training sets, meaning that

the characters were well formed and the level of contrast between the background and the

characters was high. For the neural network to have any real value, a larger training set

would be necessary. This set would have both poorly formed and low contrast examples of

each character. Using a training set of this type would cause an increase in the number of

connections necessary in the network [5].



3rd NASA Symposium on VLSI Design 1991 5.3.9

The synthesis process described may be used to deliver an application specific neural

network, trained to perform a specific task at less cost than utilizing general neural

hardware. Silicon area will be more highly utilized in the application specific case since only

the necessary circuitry is fabricated. Although more research is necessary, early results show

the method to be promising.

Acknowledgement

This work was supported by an educational grant from the National Science Foundation

MOSIS program and equipment donations from the Hewlett-Packard Co, Tektronix Inc., and

Advanced Hardware Architectures Inc. The authors would especially like to thank Paul

Cohen, of Advanced Hardware Architectures; Andrea Casotto of UC Berkeley; Dr. Gary

Harkin, Jaye Mathisen, Diane Mathews, and Bob Wall, of Montana State Univerisity; and

Dr. Gary Maki, of the University of Idaho; for their invaluable assistance.

References

[1] H. C. Anderson, "Neural Network Machines," IEEE Potentials, Vol. 8 no. 1, pp. 13-16,

Feb 1989.

[2] J. A. Anderson,D. Hammerstrom, and L. D. Jackel, "Neural Network Applications for

the 90's," IEEE Videoconference, May 23, 1991.

[3] P. T. Baffles, NETS User's Guide, Software Technology Branch, Lyndon B. Johnson

Space Center, Houston, TX.

[4] M.W. Firebaugh, Artificial Intelligence, Ch. 18, PWS-KENT, Boston MA, 1988.

[5] H. P. Graf, L. D. Jackel, W. E. Hubbard, "VLSI Implementation of a Neural Network

Model," IEEE Computer, pp. 41-49, March 1988.

[6] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing, Vol 1 and 2,

MIT Press, Cambridge, MA, 1986.

[7] S. Wandler and D. Metcalf, "Development of a Neural Network Integrated Circuit,"

Senior Project Report, Montana State University, Department of Electrical

Engineering, 1991.



5.3.10

[8] A. Casotto, ed., OCTTOOLS Revision 5.1 User Guide , University of California

Berkeley, Electronics Research Laboratory, Berkeley, CA, 1991.



3rd NASA Symposium on VLSI Design 1991

N94-18356
5.4.1

Measurement Selection
For Parametric IC Fault Diagnosis 1

A. Wu and J. Meador

School of Electrical Engineering and Computer Science

Washington State University

Pullman, Washington 99164-2752

meador@eecs.wsu.edu awu@eecs.wsu.edu

(509) 335-5363 FAX: (509) 335-3818

Abstract- This paper describes experimental results obtained with the use of

measurement reduction for statistical IC fault diagnosis. The reduction method

used involves data pre-processing in a fashion consistent with a specific defini-

tion of parametric faults. The effects of this preprocessing are examined.

1 Introduction

An integrated circuit test is specified by a combination of input and output signals which

characterizes some attribute of ideal circuit function. The presence of faults in a fabri-

cated circuit will cause observed output signals to deviate from the simulated ideal. A

fault diagnostic is a decision rule combining what is known about an ideal circuit test

response with information about how the response is distorted by fabrication variations

and measurement noise. The rule is used to detect fault existence in fabricated circuits

using real test equipment.

The IC failure diagnosis problem can be viewed as a statistical pattern recognition

problem. Instead of extracting output response parameters explicitly and comparing with

the specification, the output responses can be identified into faulty or non-faulty according

to some classification decision rules. It has been positively demonstrated that pattern

classification technique can be used in IC diagnosis [Mea90].

Recent experiments [Mea91] have showed that feedforward network classifier (FFN)

generally perform as well as or even better either than the traditional statistical parametric

classifier, Gaussian Maximum Likelihood Classifier (GML) or the non-parametric classifier,

the K-nearest Neighbors classifier (KNN). However, it usually needs more computational

efforts for FFN in the training phase to establish the discriminant function. To be more

effective, there is a need to find ways to consistently reduce this training overhead, while

simultaneously retaining prediction accuracy.

Nevertheless, performance of a classifier depends on the data presented in the training,

the discriminant function established in the training phase as well as the classification

algorithm of the classifier. To ensure high performance accuracy, essential information has

to be presented in the training data for the establishment of the dlscrimlnant function of

the classifier.

XThis work supported by NSF-UIC CDADIC Project 90-1.



5.4.2

In IC diagnosis, determination of a circuit fault is to classify the circuit from the
input-output measurementaccording to a decision rule which is built upon the estimated
prior probability distribution in the performancespaceof the circuit. Judgment is made

according to the decision rule of the classifier established in training, which defines the

decision boundaries for the classification. For accurate classification, decision boundaries

of the classifier has to be coincided with or close to the performance specification criteria

or boundaries. Such decision boundaries has to be captured by the classifier to set up the

discriminant function or decision rules in training. The acceptance region of the fabricated

circuits lines between the upper and lower performance specification limits. For highest

accuracy, in the training phase, the decision boundaries have to be built around the spec-

ification transition space. In this case, they are the upper and lower specification limits

instead of the mean of the performance distribution.

It is a well known fact that, in back-propagation training=_Mgorithm, input vMues are

multiplied by the derivative of the logistic function, such that, a window is placed on the

current estimated decision boundaries, not the mean [Lip88]. This character is very impor-

tant in IC diagnostic problem especially the go/no go testing. If the discriminant function

is established around the specification boundaries, it will improve the performance of th_

classifier. Besides, training on these boundaries, it will improve the training computational

load.

To improve the training effort, it is therefore logical to train a FFN based on the

decision boundaries. If data used in the training is conected around these boundaries,

the discrimlnant function computed by the trained network will be more accurate in these

regions, it will improve the training computational load as well, since fewer epochs are

required to converge to a given accuracy. This paper reports on experiments conducted to

help verify this idea. -

2 Data Reduction Method: Boundary Band Data Pre-

processing

In contrast to the design task, the concern of IC fault diagnosis is mainly on whether the

circuit performance fa_ within the acceptance region instead of the performance mean. In

other words, the specification transition boundaries are the most concerns in iC diagnosis.

If the decision rules or decision boundaries of any diagnosis algorithm are based on these

transition boundaries, it is reasonable to expect a highly accurate and effective diagnostic

capability.

As discussed in the preceding section, there is a need to improve the computational load

of training FFN classifier even though it has a better diagnostic capability than the other

traditional statistical classifiers. Here, we proposed a Boundary Band Data (BBD) training

method for FFN training to improve the computational load in the training phase. The

essence of the proposed method is based on the characteristic of FFN. In back-propagation

training algorithm of FFN, input values are multiplied by the derivative of the logistic

function, such that, a window is placed on the current estimated decision boundaries, not



3rd NASA Symposium on VLSI Design 1991 5.4.3

Vdd
7

4,516 [ 7

IL. / t_..
!1

V_s

Figure 1: Operational amplifier circuit diagram

the mean. If the discriminant function or decision boundary of the trained network is set

up around the specification transition boundaries, it will improve the performance of the

classifier. Besides, training on these boundaries, it will improve the training computational

load. Making use of this distinctive characteristic of FFN, the proposed Boundary Band

Data training method is to train a FFN with those data gather from the proximity of

performance specification transition boundaries.

3 Experiment Set Up

To investigate the feasibility of using BBD in FFN training, experiments were conducted

in this study. The transient response and frequency response of the operational amplifier

si_own in Figure 1 were used for the experiments. For frequency response experiments, the

open loop frequency response of the operational amplifier were used. For transient response

experiments, the step response of an inverting amplifier with the same operational amplifier

for the frequency response experiments are Used. The circuit configuration for the transient

response experiment is shown in Figure 2.

4 Fault Definition

All experiments were designed to detect parametric faults in an operational amplifier.

Monte Carlo simulation of MOSFET model parameters was used. Only those statistical

independent model parameters were used so that the correlation effect among model pa-

rameters was eliminated. In each of the experiments, circuit fault was defined as a large

variation in one of the independent model parameter. In our experiments, three types of

parametric faults were used. They were variations in MOSFET oxide thickness (of all the

transistor in the circuit), zero bias threshold voltage, and junction depth.



5.4.4

Vin

R1 1OOOK

1
Vout

CL

20 p

Figure 2: Inverting amphfier circuit configu_rat!on

Monte Carlo simulation using SPICE with a large variation around the mean value

in the chosen model parameter was used. With a pre-selected performance criteria, t_e

appropriate upper and lower limitsoTthe m0del-par-ameter which de_ed the fault and

normal transition boundaries could be determined. For example, we were interested to

define the fault and normal boundaries for the experiment with the inverting amplifier

circuits. The fault was chosen to be variation in oxide thickness. So the SPICE model

parameter, toz, was chosen with mean value equal to 600._. The related circuit performance

criteria were the step response overshoot and the slope of the stem response. Using the

above meth=od, the transition boundaries were set at 400_ and 800_.The acceptance region

was set between these limits. Any circuit fell within this region was defined to be normal;

In this study, three types of parametric faults were studied. They were _c{rcuit faults

in oxide thickness, junction depth, and zero biased threshold voltage. For ca_oh_ of the

experimen_s,_'there"w_s_only _a_sqngle parametric fault existi_ng in the ¢i__reuit. The m_eau

model parameter values for normal circuit and transition boundaries for circuit faults are

_li_s_tedi_n Table 1.

5 Experiment Description

Eight experiments which were divided into two categories were investigated for the BBD

training methods. For the first category, it consisted of six experiments. To simplify the

problem, in each of the experiments, only one SPICE model parameter was allowed to

alter. It was under the assumption that there was no process existing in IC fabrication

except the process fault. Even though such assumption might not be realistic for actual !C

fabrication, the goal of these non-noisy experiments was to study the effect of the proposed

BBD training method under the ideal condition. In these non-noisy experiments, the



3rd NASA Symposium on VLSI Design 1991 5.4.5

]1 Experiment Parametric Fault Performance parameters Mean Upper Limit Lower Limit I]

1 oxide thickness slew rate and overshoot 60021 80021 40021

2 junction depth slew rate 0.4#m 0.6#m 0.2#m

3 threshold voltage slew rate 10.7V[ 10.5Vl 10.gVl

4 oxide thickness slew rate 60021 80021 40021

5 junction depth slew rate 0.4#m 0.6#m 0.2#m

6 threshold voltage slew rate [0.7V[ [0.5V[ [0.9V[

7 oxide thickness slew rate and overshoot 60021 80021 40021

8 junction depth slew rate 0.4#m 0.6#m 0.2pm

Table 1: SPICE model parameter mean and transition boundary values

transient response of the amplifier in a closed loop inverting circuit under various nominal

and faulty conditions was used to develop the experiment database for the experiment 1

to 3. For experiments 4 to 6_ open loop frequency response of the amplifier under the

same nominal and faulty conditions as in experiments 1 to 3 were used. The six non-noisy

experiments were:

Ezp.l: Detect a 33% variation in oxide thickness of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Ezp.$: Detect a 50% variation in junction depth of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Ezp.3: Detect a 30% variation in threshold voltage of all the transistor in the circuit by

observing the circuit open-loop frequency response.

Ezp._: Detect a 33% variation in oxide thickness of all the transistor in the circuit by

observing the circuit time-domain step response.

Ezp.5: Detect a 50% variation in junction depth of all the transistor in the circuit by

observing the circuit time-domain step response.

Ezp.6: Detect a 30% variation in threshold voltage of all the transistor in the circuit by

observing the circuit time-domain step response.

The second categories of the experiments consisted of two experiments which were

similar to experiment 4 and 5 with the difference that there were process noise existed.

It was under the assumption that there were process noises in the fabrication but not

contributed to circuit faults. Such assumption was more realistic for actual IC fabrication.

The goal of these experiments was to study the effect of BBD training of FFN under the

non-ideal environment. Those process noises were generated by varying those statistical

independent model parameters [She88] of lateral diffusion (LD), substrate doping density

(NSUB), bulk threshold parameter (gamma), and channel-length modulation (lambda)



5.4.6

at most one percent. In these two experiments, the transient response of the amplifier

in a closed loop inverting circuit under various nominal and faulty conditions was used

to develop the experiment database. For these noisy experiments, only one parametric

fault were assumed but accompanied with all the process noises listed above. The noisy
experiments were: --

Ezp. 7: Detect a 33% variation in oxide thickness of all the transistor with process noise in

the circuit by o_bserving the circuit time-dom_n step response. _

Ezp.8: Detect a 50% vamatlon m junction depth of all the transistor with process noise in

the circuit by observing the circuit time-domain step response.

6 Data Generation

In each of the-experiments, two d'ta-distr]l_uti0ns n-a-rnely norma_y dlstri_uted data and

boundary band data as shown in Figure 3 and 4, were used to build up the experi_m_ent

database. 1_0 slmulated responses were obtained viaa Monte Carlo simulation for each

data distribution.--Data forthe boundary-band--di_stributi0n were __-enerated- around-the

transition boundaries. The sample data distribution of each of the experiment is similar

to Figure 3 and 4 with difference in variation percentage of the corresponding model

parameter. And the corresponding circuit performance distribution _O_ the two data

distributions were showed in Figure 5 and 6. 60 of the responses correspond to the fault

_ree condition and 60 correspond to the faulty Conditio_n. In other words, there were four

set of data consisting the experimental database for each of the experiments. The data sets

were data for faulty circuit with normal distribution, data for normal circuit with normal

distribution, data for faulty circuit with boundary band distribution, and data for normal

circuit with boundary band distribution. For a particular data distribution, 30 responses

from each class (normal/faulty) were used for classifier training. After training, classifier

were tested on the unseen data from the trained data distribution as well as the data from

the other type of distributiou.

T Classifier Training

As mentioned in the introduction, the objective of this study is to contrast the effectiveness

of a feedforward network classifier trained on boundary band data against that of tradi-

tional statistical classifiers trained on normally distributed data and feedforward network

as well in the context of IC fault diagnosis. Classifiers used in this study were Gaussian

Maximum Likelihood Classifier, K-Nearest Neighbor Classifier and Feedforward Classifier.

Thirty patterns chosen from each the normal and faulty class of each of the experimental

database for• the training. For GML, training data was used to build the corre_s_pondiflg

mean matrix, covariance matrix and the inverse of covariance matrix. For KNN, training

data wasused as (he base for the cfassii_er. For FF-N, different types 0ftrainingwere used



3rd NASA Symposium on VLSI Design 1991 5.4.7

faulty

tr:]nsition bound:zry A

faulty

ruullv (lal;I t)3nd

Iran_ilion houndarT, B

•e----.--- Normal

faullyI

.... -i r-'-'_ I

)
, j i..%;--_ .............. :::._ _ ..........

F-:
. • I_ormJI dal;i h.ind

Figure 3: Data with normal distribution Figure 4: Data with boundary hand dis-

tribution

to establish the discriminant function for the corresponding FFN. There were FFN trained

with non-noisy normal distributed data, non-noisy boundary band data, noisy normal

distributed data, and noisy boundary band data. For each trained FFN, only one of the

listed training method was used. Unlike traditional statistical classifiers, there are some

training criteria can be chosen. We trained our FFN based on the total sum of square

error of all the training data for a particular type of training or up to a preset training

epoch limit.

8 Classifier Computational Load Calculation

The performance of each classifier was not only measured in terms of predictive accuracy on

previously unseen data, but also the number of floating point operations (FLOPS) required

to construct the classifier, and the number of FLOPS required to perform a diagnostic

classification. Number of FLOPS computed for each of the classifier of each experiment

is based on the implementation algorithm. It is not the actual computer operation. Since

different software packages are used in the implementation of the classifier, it is not accurate

if they are compared based on the real CPU time. In comparing computahon reqmremen

in testing , number of flops required per pattern are calculated with the equations 2y(n +

1) + 2z(y + 1) for Feedforward network, ran(3 -+-2n) for Gaussian Maximum Likelihood

classifier, 3mnp for K-Nearest Neighbor classifier. (m: no. of class_ n: no. of measurement

for each pattern, y: no. of hidden unit, z: no. of output unit, p: no. of pattern for the

training set in each class)

9 Experiment Results

In each of the experiments, the performance of the classifiers were evaluated for the pre-

diction accuracy of unseen data as well as the training and testing computational load.

The results of non-noisy experiments 1 to 6 are summarized in Table 2 and Table 3. The

results of noisy experiments 7 and 8 are summarized in Table 4.



5.4.8

]Classifier EXI_. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 ]]

Accuracy (unseen data - _)

FFN(Norm) 82.2 88.8 97.7 88 95.5 98.8

FFN(Boun) 99.4 97.2 98.8 97.2 98.8 96.6

FFN(ReBo) 98.8 97.7 100 98.3 99.4 97.2

GML N.W N.W N.W 50 N.W N.W

1NN 85 96 98.3 50 96 100

3NN 81.6 100 98.3 53.2 100 100

5NN 80 96 98.3 50 96 100

Setup FLOPs (total)

FFN(Norm) 3e8 3e8 3e8 2.7e8 2.7e8 2.7e8

FFN(Boun) 3e8 3e8 3e8 2.7e8 2.7e8 2.7e8

FFN(ReBo) 6e7 6e7 3e7 5.4e7 5.4e7 2.7e8

GML N.A N.A N.A 5e4 N.A N.A

KNN none

Diagnostic FLOPs (per pattern)

FFN(Norm) 1.5e3 1.5e3 !.5e3 1.4e3 1.4e3 1.4e3

FFN(Boun) 1.5e3 1.5e8 1.5e3 !.4e3 1.4e3 1.4e3

FFN(Rebo) !.5e3 !.5e3 1.5e3 !.4e3 1.4e3 1.4e3

GML N.A N.A N.A 5.6e3 N.A N.A

KNN !.5e4 1.5e4 1.5e4 1.3e4 1.3e4 1.3e4

N.A: Not applicable

N.Wi Not working for the case due to singular c0variance matrix

GML: Gaussian Maximum Likelihood Classifier

KNN: K-Nearest Neighbors Classifier .............

:_: FFNN--_m')_Fecdfotwardn_t-work-tmlnedwlth aorm_ dis_fl_u_'ed _a;a : = :

FFN(Boun): Feedforward network trained with boundary band data .

-FFN(ReBo):reedforw_dn-eiW0d_ trained with bou-nd ryb -a data and reduced training epoch

Table 2: Classifier Accuracy and Computa, tional Overhead of Exp. 1 to 6



3rd NASA Symposium on VLSI Design 1991 5.4.9

We trained three FFN for each of the experiments. There was FFN trained with normal

distributed data. In this training, the FFN (Norm) was trained up to a point that the t_s

did not changed much with ongoing training. We determined the training stopping point

to be 2e5 epochs. FFN (Boun) was a FFN trained with the boundary band data around

the transition values. The same training stopping point was used as in FFN(Norm). The

third type of training used in these six experiments was a FFN trained with boundary band

data but with fewer training epochs. The stopping point of this training method depended

on the prediction accuracy of the trained FFN. We stopped the training whenever the

prediction accuracy of the trained FFN was similar to the FFN(Boun).

From the results of the experiments 1 to 6, summarized in Table 2, it shown that

feedforward networks had better performance than GML and KNN. Besides, in general,

FFN trained with boundary band data had better prediction accuracy than that of FFN

trained with normally distributed data. These results were observed as predicted in the

proposed method section. It was because the decision boundaries of the trained networks

were expected to set around the transition boundaries in the performance space. Moreover_

trained with fewer epoch, in general, it had a better prediction accuracy. It was because of

the nature of neural network. With fewer training, it might eliminate the trained network

from memorize the training data. In most of the cases, inverse covariance matrix of the

training data for GML could not be computed without further data preprocessing.

To investigate the effectiveness of boundary band training, different types of training

were used in our experiment. There were FFN trained with non:noisy normal distributed

data, non-noisy boundary band data, noisy normal distributed data_ and noisy boundary

band data. For each trained FFN, only one of the listed training method was used. The

results of FNN trained with these method of the non-noisy experiments are summarized

in Table 3. Experiments with process noises are summarized in Table 4.

Results shown in Table 3 and 4 were the prediction accuracy of FFN with different

training methods. Each trained FFN was tested on the unseen data from both of the

normal distributed database and boundary band database. As showed in Table 3 and 4,

there were two prediction accuracy for each of the trained FFN which tested on unseen

data from normal distributed database (labeled Normal) and from boundary band database

(labeled Boundary). It showed that the boundary band training did work on both non-

noisy and noise cases. In general, with fewer training epochs, FFN trained with boundary

band data performed as well as and even better in some case than FNN trained with

normal distributed data. And, there were a large training epochs and prediction trade

off of FNN trained with boundary band data. Using this method, there was very few

prediction degradation but with a significant reduction in computation load spending on

training.



5.4.10

U Frequency Response Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 [I

Accuracy(unseen data-%) with various distribution
FFN(Norm) trained with normally distributed data

Normal 95 96.6 98.3 96.6 96.6 98.3

Boundary 75.8 85 97.5 85 95 99.1

FFN(Boun) trained with boundary band data

Normal 99.1 98.3 99.1 96.6 98.3 96.6

Boundary 100 95 99.1 98.3 100 100
FFN(ReBo) trained with boundary band data

and reduced training epoch
Normal

Boundary

Setup Computation Load (Training)

98.3 97.5 100 98.3 99.1 97.5

100 98.3 100 98.3 i00 96.3

FFN(Norm) trained with normally distributed data

Epoch 2e5
Flops 3e8

Load !00%

FFN(Boun) trained with boundary band data

2e5 2e5 2e5 2e5 2e5
3e8 3e8 2.7e8 2.7e8 2.7e8

100% 100% 100% 100% 100%

Epoch 2e5 2e5 2e5 2e5 2e5 2e5

Flops 3e8 3e8 3e8 2.7e8 2.7e8 2.7e8

Load , 100% 100% 100% 100% 100% 100%

FFN(ReBo) trained with boundary band data

and reduced training epoch

Epoch 4e4 4e4 2e4 4e4 2e4 2e4

Flops 6e7 6e7 3e7 5.4e7 2.7e7 2.7e7

Load 20% 20% 10% 20% 10% 10%

Table 3: Comparison of Feedforward Network with Different Training of Exp.1 to 6



3rd NASA Symposium on VLSI Design 1991 5.4.11

II Transient Response Exp. 7 Exp. 8

Accuracy (unseen data-%) with various distribution

FFN(Norm) trained with normally distributed data
Normal 98.3

Boundary 94.1

95

94.1

FFN(Boun) trained with boundary band data
Normal

Boundary

97.5

98.3

99.1

96.6

FFN(ReBo) trained with boundary band data

and reduced training epoch
Normal

Boundary

99.1

98.3

96.6

95

Setup Computation Load (Training)

FFN(Norm) trained with normally distributed data

Epoch 2e5

Flops 2.7e8
Load 100%

2e5

2.7e8

100%

FFN(Boun) trained with boundary band data

Epoch 2e5 2e5

Flops 2.7e8 2.7e8
Load 100% 100%

FFN(ReBo) trained with boundary band data

Epoch 4e3 4e3

Flops 5.4e6 5.4e6
Load 2% 2%

Table 4: Comparison of Feedforward Network with Different Training of Noisy Exp.7 and

8



5.4.12

10 Conclusion

We studied the effectiveness of a feedforward network classifier trained on boundary data

against that of traditional statistical classifiers trained on normally distributed data and

feedforward network as well in the context of IC fault diagnosis. Eight experiments with

and without process noises were conducted. In this study, experiment results once again

demonstrated, in general, that feedforward network out performed the traditional staffs-

tical classifiers namely Gaussian Maximum Likelihood classifier and K-Nearest Neighbor

classifier. Feedforward networks trained with boundary band data, it reduced the training

effort with only little prediction degradation. Experiment results showed that the proposed

boundary band data did improve the computational load needed for t:eedforward network

training.

References

[1] William Y. Huang and Richard P. Lippmann, Comparisons Between Neural Net and

Conventional Classifiers, Proc: International ]oin_ Conference of Neural Network, pp.

IV-485-489, i988.

[2] T. Lin, H. Tseng, A. Wu, N. Dogan and J. Meador, Neural Net Diagnostics for VLSI

Test, Proc. Second NASA SERC Symposium on VLSI Design 1990, pp. 6.1.1-6.1.11,
1990.

[3] J.L Meador, A. Wu, C.T. Tseng and T.S. Lin, Mixed Signal IC Test, NSF Center for

Design Analog-Digital Integrated Circuit Technical Report 90-1, Project # CDADIC

90-1, Jan 1991.

[4] Bing. J. Sheu, Chung-Ping Wah, Chih-Ching Shih, Wen-jay Hsu and Ming t2. Hsu, De-

termination of Process-Dependent Critical SPICE Parameters for Application-Specific

ICs, IEEE Proc. International Co7¢ on MicroeIectronic Test Structure, pp.73-78,
1988.



3rd NASA Symposium on VLSI Design 1991

Fuzzy Control of
Magnetic Bearings

J. J. Feeley, G. M. Niederauer, and D. J. Ahlstrom

Department of Electrical Engineering

NASA Space Engineering Research Center for VLSI Design

University of Idaho

Moscow, Idaho 83843

Abstract- This paper considers the use of an adaptive fuzzy control algorithm

implemented on a VLSI chip for the control of a magnetic bearing. The archi-

tecture of the adaptive fuzzy controller is similar to that of a neural network.

The performance of the fuzzy controller is compared to that of a conventional

controller by computer simulation.

1 Introduction

Magnetic levitation is receiving increasing attention as a viable alternative to conventional

methods of moving and positioning objects [1]. NASA, for example, has developed a

cryogenic cooler that uses magnetic bearings and actuators exclusively [2]. One of the

more difficult aspects of the application of magnetic bearings is the control of the position

of the shaft in the bearing housing. Considerable attention has been given to this problem

recently. Williams et. al. [3] reported on the digital control of active magnetic bearings and

showed how the flexibility of digital control was extremely useful in implementing a number

of control algorithms including second-derivative and integral feedback. Chen and Darlow

[4] describe an analog control system for an active magnetic bearing that uses velocity and

acceleration observers to improve damping and cancel imbalance and other disturbance

forces to greatly improve the overall system performance. Keith et. al. [5] discuss the

magnetic support of flexible shaft at speeds up to 14,000 RPM using a PC-based digital

controller implementing a proportional-derivative control algorithm. A comparison with an

earlier analog proportional-derivative controller is also made. Chen [6] describes an active

magnetic bearing control scheme using three parallel feedback loops to achieve dynamic

stiffness, static stiffness, and damping. He presents a closed-form solution for controller

parameters in terms of desired stiffness and damping. Humphris et. al. [7] present a

comprehensive treatment of the active magnetic bearing control problem and compare the

relative performance of low bandwidth and high bandwidth controllers. Scudiere et. al. [8]

used a Texas Instruments TMS32010 digital signal processor to implement a proportional-

integral-derivative control algorithm to successfully control the position of a number of

small spheres and rotors. Feeley et. al. [9] described root locus design of a double lead-lag

controller mapped into an equivalent digital controller via the Tustin transformation. The

resulting algorithm has been implemented on an Intel 80KC196C microprocessor and used

to control an analog computer model of the NASA magnetic bearing.

The difficulty of the control problem stems from two basic causes. The first is due



6.1.2

to the physical nature of the magnetic bearing system itself. As shown in Section 2, the

uncontrolled magnetic bearing system is unstable, uncertain, and highly nonlinear. The

instability is due to the relentlessness of gravity in causing any suspended object to fall.

The uncertainties arise from the difficulties in modeling viscous friction, eddy currents,

leakage flux, and accounting for disturbance forces due to vehicle acceleration, motion of

the shaft, and other random events. The nonlinearities arise in thesquare-law nature of

magnetic forces, the nonlinear relationship between actuator current and magnetic flux,

and the nonlinear properties of materials in the magnetic circuit. The second basic cause of

difficulty in the control problem stems from the decision to use digital control. Sampling is

inherent in digital control and it is reasonable to expect poorer performance from a digital

control system using data samples than from its ideal analog equivalent using continuous

data. This inevitable degradation in performance encountered in moving from analog to

digital control must be compensated for by the use of more sophisticated digital control

algorithms and the other advantages inherent in digital control.

A control scheme that is _tive in overcoming these two basic causes of difficulty

in the control problem is presented in this paper. The scheme is based on the theory of

fuzzy systems. The modeling problem is addressed by substituting the imprecise linguistic

model of fuzzy theory for the precise model of physical theory. The sampling problem is

addressed by implementing the fuzzy algorithm in a parallel architecture suitable for VLSI

implementation thereby reducing processing time and allowing high sampling rates.

The remainder of the paper is organized as follows. Section 2 describes the magnetic

bearing system and presents a mathematical model developed by Feeley et. al. [10]. In

Section 3 some essential elements of fuzzy control theory are presented and an adaptive

fuzzy controller is developed. In Section 4 the performance of the fuzzy controller is

analyzed using a computer simulati0n based on the nonlinear model of Section 2. A

adaptive fuzzy control VLSI chip architecture is outlined in Section 5 and some conclusions

and recommendations are given in Section 6

2 Magnetic Bearing System

A schematic cross-sectional side view of NASA's magnetic bearing is shown in Figure 1

supporting one end of a rigid shaft. An end view would show the circular cross-section

shaft centered in t_h_e annular gap created by- t-h_lJeaHng _ousing and t_e Shaft_ l_igure

1 also shows the shaft, magnetic material inIays that provide paths for the magnetic_ux

produced by the adjacent bearing actuators. The actuators are symmetrically located in

the bearing housing and cons:s'_Vb/magnetlc materiai pole pieces and coils of copper wire.

A position sensor is located close to each actuator to measure the position of the shaft. A

total of four actuator and position sensor assemblies are Iocated at 90 ° increments around

the circumference of the housing. Coordinated control of opposing actuators permits posi-

tioning of the end of the shaft anywhere in the annular gap. An identical bearing assembly

supports the other end of the shaft. For simplicity, rotational forces are not directly ac-

counted for and half of the shaft mass is assumed to be concentrated at the point of action



3rd NASA Symposium on VLSI Design 1991
6.1.3

of the magnetic forces of each bearing assembly.

Bearing Hoursing

Gap Position Sensor

Bear,n0H :-I.....

y,v

Figure I: Schematic cross-section of magnetic bearing assembly

Assuming motion in the one-dimensional coordinate system defined in Figure 1, appli-

cation of Newton's second law yields

£1- £2 - Fd- Ff
dt 2 M

where Y is the position of the shaft, F1 is the magnetic force exerted by the upper

actuator, F2 is the magnetic force exerted by the lower actuator, Fa is a disturbance force,

and F t is a viscous friction force. F1 and F2 are, in turn, defined by

and

#oA [Nell ]
F1 =_ LYo-VJ

#oA[N_i2] 2
F2- 4- tY0-YJ



6.1.4

where # is the magnetic permeability, A is the area of one pole face, Arc is the number of

coli turns, 11 and 12 are the coil currents, and y0 is the initial gap distance. The friction force

is- assumed proportional to the square of the shaft velocity and is modeled mathematically

as Ff = K/v[v[, and the disturbance force is taken as an exogenous input.

The electromagnetlc of the actuator are modeled with the aid of the circuit diagram

of Figure 2. The circuit model consists of [wo loops, one for the primary coil current ic,

and a second for the induced eddy current ie. Applying Kirchoff's voltage law to each loop
yields the circuit equations

J_
v¢ = + +

dt dt

0 = Rei_ + N_ + N,¢ d¢_
dt

where vc is the voltage applied to the coil, Arc is the number of turns in the coil, ee

is the flux produced by the coll current, No, is the number of turns of the coil linked by

the flux produced by the eddy currents, ¢, is the flUX produced by the eddy currents, J_e

is the resistance of the eddy current paths, N, is the number of turns in the equivalent

eddy current coil, and N,¢ is the number of turns in the equivalent eddy current coii i_nked

by the flux produced by primary current. Assuming the entire mmf drop of the magnetic

circuit is taken across the two air gaps, the fluxes can be expressed in terms of the currents

as ¢_ = _ and ¢, _ where y_g is the distance between the pole piece and the2ya# _ 2yag

shaft, y0 - y for the upper gap and y0 +=y for the lower gap. Solving these equations for
the time derivatives of the currents leads to

- k___,ni [ v N_,_] i,_ --dt -- L1 cl -- _ "]- L1 J _'l re1

• ,, _ • k_kn__n- 1
_t _-" -- [y--o'-_ Jt- NeL,] 'c2 71- L2 "e2 + N-_-_'Oc2

L2 J ze2 -- -£-;2vc2

where Li _, L2 a A= = : No ,- =a k = =
equations presented in this section constitute a consistent mathematical model relating

the input voltages applied to the actuator coils, vet and v_2 , to the position of the shaft,

Y" : ........

3 Fuzzy Control

Conventional feedback control systems measure, relatively precisely, certain process vari-

ables, operate on these measurements with a control algorithm to produce precise command

signals, and apply these command signals to the process to control its behavior in s6me

desired way. The control algorithm generally relies on an explicit mathematical model

of the system to be controlled and some expression of desired system performance. A



3rd NASA Symposium on VLSI Design 1991 6.1.5

i c
I

e

e

Figure 2: Circuit model of actuator.

crucial element in control algorithm design is the development of a suitable mathematical

model of the system; in general, performance of the controlled system will be no better

than the system model on which the control algorithm is based. The model should be

neither too complicated, making the control algorithm too complex to implement, nor too

simple, missing essential features of system behavior. Since most systems requiring au-

tomatic feedback control are dynamic and nonlinear, the development of a simple model

that still captures the essence of important system performance characteristics is usually

a time-consuming, and in some cases, impossible, task.

It is interesting to compare these automatic control systems with manual control sys-

tems where a human operator makes seemingly imprecise measurements, processes them

rapidly in the brain, and produces the correct control command to, say, ride a bicycle.

While it may not be impossible to build an automatic control system to control a bicycle

(although we have never seen one), it would certainly be quite difficult. Yet, a young child

can become a proficient rider after only a short training session with no knowledge whatso-

ever of the mathematics of bicycle dynamics. It is this paradox that led Zadeh [11] to the

development of the theory of fuzzy sets, Mandami [12] to consider the linguistic synthesis

of fuzzy control systems, and, most recently, Kosko [13] to explore its connections with

neural networks in the adaptive control of dynamic systems.

As with neural network controllers, fuzzy controllers try to emulate the functions of

the human brain. A fundamental difference between the two is that neural controllers

assume no a' priori knowledge of system behavior, while fuzzy controllers start with a

linguistic description of whatever is known about the system. There is, however, a striking

similarity at the implementation level between neural network controllers and adaptive

fuzzy controllers [13].



6.1.6

3.1 Fuzzy Variables and Fuzzy Values

The notion_ of fuzzy control are rooted in the theory of fuzzy sets [11]. The basic difference

between conventional (crisp) set theory and fuzzy set theory lies in the values assigned to

the variables. Consider, for example, a variable called position, y. In crisp theory y could

take on values, say, from 0m to +10m. At any particular point in time, the position of an

object could be given by the :value, say, 4m. In fuzzy theory, however, the values assigned

to the position variable, y, are of not ihe familiar, Crisp, numerical type but, rather, an

unfamiliar, fuzzy, linguistic type; e.g. "close", or "far", or "very far". This is consistent

with the child bicyclist's assessment of position relative to an upcoming tree. Since one

of the strengths of fuzzy theory is that it is basically quantitative in nature, it remains

to relate the fuzzy values "close", etc. to appropriate numerical values in a fuzzy way

consistent with our notion of the meanings of the corresponding linguistic values. In the

example considered above, "close", "far", and "very far" may be characterized by the

distributions shown in Figure 3 where the abscissa is the distance from the tree and the

ordinate is the degree to which "close", etc. is an accurate reprfisen_at_on of the distance

to the tree. Certainly, if the cyclist is. about to hit the tree it is "close" while if it is 10m

"el se"away it is not. If, however, it is 4m away it is only o to a degree; more specifically

"close" is an accurate description of the distance 4m with degree 0.21, while "far" is an

accurate description of this same distance with degree 0.64, and "very far" is not at all

accurate and, so, is descriptive with degree 0.0. This subjective assessment of "closeness",

etc. is introduced by the designer in the development of these distributions , or a s they are
known in_uz_zy t_eory, _"membe_rsIn_p-_uncti0ns_ _o summarize, it is co_freer to think of the

the fuzzy values "close", etc. as "fuzzy numbers" whose relationship to "crisp numbers"

is provided by a defining membership function.

10 ) c_o_e _a_ Wr_ ra_

g

6
"6

4

.2

0

0 l 2 3 4 5 6 7 8 9 lO

Universe of discourse

Figure 3: Membership functions for the fuzzy values "Close", "Far", and "Very Far" of

the fuzzy variable "Position".



3rd NASA Symposium on VLSI Design 1991 6.1.7

3.2 Fuzzy Functions

Analogous to the function of crisp mathematics that maps crisp input variables into crisp

output variables, fuzzy mathematics uses a relational matrix to map fuzzy input variables

into fuzzy output variables. The relational matrix is constructed from a linguistic rule

base relating fuzzy input variables to fuzzy output variables. The linguistic rule base

may be generated from a set of logical implications of the "IF-THEN" type. Consider,

for example, a system with two fuzzy input position variables and , and one fuzzy output

steering variable 0. Let the possible fuzzy values of be "left" (L), "center" (C), and "right"

(R), let the possible fuzzy values of be "close" (C), "far" (F), and "very far" (VF), and

the possible fuzzy values of be "left" (L), "center" (C), and "right" (R). A brief linguistic

rule base might then consist of the following logical implications:

1. IF [x is L and y is C] THEN [0 should be R]

2. IF [z is R and y is C] THEN [0 should be L l

3. IF [z is C and y is V] THEN [0 should be C]

The relational matrix embodying these rules is shown in Figure 4, and is seen to be

a concise display of the relationship between the pairs of fuzzy values of the fuzzy input

variables and the fuzzy values of the fuzzy output variable. It is interesting to note that

the relational matrix is not necessarily full. An important and powerful aspect of fuzzy

control is that only those rules that are well known need be specified, the fuzzy calculations

will "interpolate" or "extrapolate" to flU in missing rules. The fuzzy calculations will also

resolve conflicting rules in an optimal way consistent with the specified linguistic rule base

and defined fuzzy variables.

d
V

_3

_3
:>

Co F

O

O_

>. C
N
N

t.J-

Fuzzy position variable, x

L C R

p_r

R

C

L

Figure 4: Relational matrix mapping fuzzy input variables z and y to fuzzy output variable

0.



6.1.8

3.3 Fuzzy Controller

Fuzzy control systems inevitably interact with the physical world of crisp measurements

and actuators. On input to the controller, crisp values of crisp variables are converted to

fuzzy values of fuzzy variables according to the membership function of the fuzzy variable.

For example, in Figure 3 a crisp value of "4" of the crisp variable position would take

on two fuzzy values "ciose '_ and r'far" of the fuzzy position variable. The membership

functions indicate that the crisp value "4 _ is the fuzzy value "close" with degree 0.21 and

the fuzzy value "far" with degree 0.64. Thus, a single measurement of a crisp variable may

activate a number of rules in linguistic rule base or, equivalently, the relational matrix.

Each rule will operate on its fuzzy input variables, and their membership functions, to

produce a modified membership function, or fuzzy value, for the the fuzzy output variable.

The specific form oi_ tlae output membership function may be determined either by the

correlation-minimum or the correlation-product inferencing technique [13]. Since more

than one rule may be activated by a single measurement it follows, then, that a number

of fuzzy values of the output may also be generated." The output membership functions

generated by the firing of several rules may be combined in a number of different ways

to produce a singl e e_risp output to activate a physical actuator. Two commonly used

methods are the mean-of-maxima and the centrold methods[13].

The fuzzy controller under development for themagnetic bearing has two fuzzy input

variables, position V and, change _n position dr; and one _uzzy output variable, actuator

voltage v. Each fuzzy variable may take on each of seven fuzzy values: "negative large"

(NL), "negative medium" (NM), "negative small" (NS), "zero" (ZE), "positive small"

(PS), "positive medium" (PM), and "positive large" (PL). The fuzzy values of the input

variables are shown over their corresponding universe of discourse in Figure 5. The universe

of discourse ranges from-5 volts (corresponding to a shaft position of -19pm) to +5 volts

(corresponding to a position of +19/_m). Fuzzy values are trapezoidal in shape with a

maximum overlap of 25%, and are narrower near zero to provide finer control close to the
desired value.

Degree of membership (units)

NL NM NS ZE PS PM

-4 -3 -2 -1 0 t 2

0

-5 3 4 5

= _ _ Universe of discourse (volts)

Figure 5: Fuzzy values of input variables V and dr.

Fuzzy values of the output variables are shown in Figure 6. They are triangular in



3rd NASA Symposium on VLSI Design 1991 • 6,1.9

shape, have a maximum overlap of 25%, and are closer together near zero to provide finer

control. The exact shapes and locations of the fuzzy input and output variables are design

parameters whose optimal values are found by numerical experimentation.

0

-6

Degree of membership (units)

Ni._ NM NS ZE I PS PM PL

-5 -4 -3 -2 -1 0 1 2 3 4 5

Universe of discourse (volts}

0

6

Figure 6: Fuzzy values of the output variable v.

The 7 x 7 relational matrix relating the fuzzy input pairs to fuzzy values of the output

is shown in Figure 7. The relationship between the relational matrix and the corresponding

set of forty nine IF-THEN implications is obvious.

The correlation-minimum inference procedure is used to process activated rules result-

ing in a truncation of the output membership function at the minimum value of the two

input membership functions. Note that since a maximum of two input values overlap, a

maximum of four (as opposed to a possible maximum of forty nine) rules can be activated

at once. Combining of output fuzzy values and subsequent defuzzification is performed

using the centroid method.

4 Performance of Magnetic Bearing with Fuzzy Con-

troller

A linearized version of the nonlinear model presented in Section 2 was programmed using

Matlab to test the performance of the fuzzy controller. Figure 8 shows the response to a

3.8#m (1 volt) step demand change in position. The figure shows that the fuzzy controller

was successful in stabilizing the bearing and that response time is short. Sampling fre-

quency was 10 K Hz. Oscillations are small and can be further reduced by reducing the

size of the fuzzy sets representing zero error. Steady state error can be further reduced

by adding an integral mode to the controller. These results are not surprising since the

present fuzzy controller uses only position and velocity inputs and is essentially operating

as a proportional-plus-derivative controller. Additional work is being conducted to cor-

rect these deficiencies. Several promising adaptive control policies are being investigated

including modifying the input fuzzy set sizes and overlap, the output fuzzy set centroids,

and the scaling gains K_, K_, and K_. Best results were obtained with 25% set overlap

and K_ = 1, K¢ = 18, and K_ = 5.



6.!.10

NL

NM

NS

ZE
0

÷--

_ PS
0

E_

PM

PL

NL

t_ t.

NL

NiN/I

N F_./i

NS

NS

ZE

Change in positon, dy

NM NS ZE PS PM

r--I L, i[-q l'vli r'qMi NSI NS

NMINMI NS NSI ZE

N M NSI NS ZEI PS

NSI NSt ZE PSIPS

NS IZE PS PS IPM

i
ZEIPS l_S I:_K4IPMI

I

PSI_S _.A PMI PLI

PL

ZE

PS

_M!
I

_ t-,A I

Figure 7: Relational matrix for the magnetic bearing contro_er.

5 Architecture for a Fuzzy VLSI Chip : = :

The architecture of a fuzzy VLSI chip is outlined in Figure 9. The basic fuzzy Control

algorithm is contained on a single chip. Rules are downloaded from a host computer at

start-up and can be modified by the host computer later. The chip is of the all-digital

type so off-chip A/D and D/A converters are required. The fuzzy Control alg0rithm has

four parts: 1) input calculations, 2) input membership determination, 3) rule evaluation,
and 4) output defuzzification as described below.

5.1 Input Caicu|atibns .....................

The single input to the chip is the position error in volts. The current error er(n) and

the previous error ev(n - 1) are each stored in a separate registers. The current change in

error ch(n) = er(n) - er(n - 1) is computed and stored in a third register. The variables

ER and CH, used in membership function determination are found by multiplying er(n)

by Ke and ch(n) by Kc, respectively. The scaling gains Ke and Kc are downloaded from

the host computer and may be modified as required.

5.2 Input Membership Determination ....

The input membership determinat_ iS made by a tablel0ok-up,: :_ere are two look-up

tables one for E/[ and one for CH. The output of the table look-up is the modified fit

vector (A, mA,mB). Each look up table is of size 3 by m by n. : :

2_



3rd NASA Symposium on VLSI Design 1991 6.1.11

I I

Bearing set point step response

! I T i I

v

0

3.5

3

2.5

2

1.5

0.5

0 I ]_ i I I I I

0 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

l
L ! [

0.001 0.002

time (sec)

Figure 8: Response of fuzzily controlled magnetic bearing to 3.9#m step change in position.



6.1.12

Verror

VLSI Fuzzy Control Algorithm

(internal signal _.ont_ol and External Contrd not shown]

I

+

CHFIi"
Look-u] table

8__ mB÷1 I e

RELATIONAL MATRIX

Contains centroids C1,1 to C7,7

i

i

Vcontroi

Figure 9: Architecture of a fuzzy VLsi chip ......



3rd NASA Symposium on VLSI Design 1991 6.1.13

5.3 Rule Evaluation

Four rules are evaluated for each input pair. Each evaluation finds the minimum of the

input fuzzy sets and the centroid of the output fuzzy set. A 4 by n hold the minimum

input membership values and a 4 by m register hold the corresponding centroids.

5.4 Output Defuzzification

Defuzzification is done in three steps. First, the minimum membership value is multiplied

by the centroid for each of the rules activated. Second, each of these products is summed

to produce; at the same time each of the minimum membership values is also summed.

Finally, the sum of the minimum membership-centroid products is divided by the sum of

the minimum memberships to produce the desired result. The result is then multiplied by

an output voltage scaling gain K_.

6 Summary and Conclusions

A mathematical model of a magnetic bearing was presented and was used to develop a

computer simulation model to test alternative magnetic bearing control systems. A fuzzy

control system for was developed and tested by computer simulation. Initial results show

that the fuzzy controller stabilizes the magnetic bearing and produces acceptable steady-

state and transient behavior. Further research is being conducted to optimize the fuzzy

controller and to develop suitable adaptive algorithms. Particular emphasis is being placed

on achieving zero steady-state error and rejecting acceleration disturbances. Performance

comparisons between the fuzzy controller and a linear-quadratic-gaussian regulator are

being conducted. A candidate VLSI chip architecture has been proposed to implement

the fuzzy control algorithm and provide rapid sampling for real-time control. VLSI-based

fuzzy control appears feasible for real-time control of uncertain nonlinear systems like an

active magnetic bearing.

7 Acknowledgements

This work was supported in part by a grant from the NASA Space Engineering Research

Center at the University of Idaho.

References

[1] Forbes Magazine, May 1, 1989.

[2] C. Keung et. al., Design and Fabrication of a Long-Life Stifling Cycle Cooler for Space

Application, PhilipJ Laboratories, November, 1990.



6.1.14

[3] R.D. Williams, F.J. Keith, and P.E. Allaire, Digital Control of Active Magnetic Bear-

ings, IEEE Transactions on !ndustrial Electronics, February, 1990.

[4] H.N. Chen and M.S. Darlow, Magnetic Bearing with Rotating Force Control, ASME

Journal of Tribology, January, 1988.

[5] F.J. K dth, R.D. WilliamS, and P.E. Allaire, Digital Contro| of Magnetic Bearings

Supporting a Multi-Mass Flexible Rotor, Triboiogy Transactions, 1990,Vol 33,3,307-
314.

[61 E[:_Vf. _eni'Magnetlc Beari'ngs-ancI _ex_bie R0ior Drnarnics, Triboiogy Tranaactlons,

1989, Vol 32, 1, 9-15;

[7] R.R: IIumphris, et. al. Effect of Control Algorithms on Magnetic Journal Beating

Properties, ASME Journal of Engineering for Gas Turbines and Power, October,
i986.

[8] M.B. Scudiere, R.A. Willems, and G.T. Gillies, Digital Controller _or a Magnetic

Suspension System, Review of Scientific Instrumentation, August, 1986,

[9] J.J. Feeley, A. Law, and F. Lind, Digital Control of a Magnetic Beating in a Cryogenic

Cooler, NASA SERC _eymposium on VLSI Design, 1990.
Z-

M:  ie o aue , piim ot M gno,i0
Bearing, to be submitted for publication, 1991.

........ _L': 2adeh: Fuzzy Sets, Information and Vontroi, i965, Voi:8, pp. 338-353.

[12] E: Mandaml and S. Assflian, An Experiment in Linguist_c Synthesis with a _uz_,y

Controller, International Journal o] Man-Machine Studies, 1975, Vol 7, pp. 1-13.

[13] B. Kosc0, Neural Networks and Fuzzy _ystems, Prentice-Hall, inc.' i992.



3rd NASA Symposium on VLSI Design 1991

N94-

Direct Kinematics Solution Architectures

for Industrial Robot Manipulators:

Bit-Serial Versus Parallel

J. Lee

Department of Electrical Engineering

University of Houston

Houston, TX 77204-4793

K. Kim

Superconducting Super Collider Lab.

2550 Beckleymeade Avenue

Dallas, TX 75237

Abstract - This paper investigate a VLSI architecture for robot direct kine-

matic computation suitable for industrial robot manipulators The Denavit-

Hartenberg transformations are reviewed to exploit a proper processing ele-

ment, namely an augmented CORDIC. Specifically, two distinct implementa-

tions are elaborated on, such as the blt-serial and parallel. Performance of each

scheme is analyzed with respect to the time to compute one location of the

end-effector of a 6-1inks manipulator, and the number of transistors required.

1 CORDIC Techniques

The matrix Aj describing the jth link is proposed to be implemented via 4 CORDICs:

parallel two for the w-axis operation, and another parallel two for the x-axis. Since, the

rotation and translation are disjoint each other, the 4 CORDIC can be done via a 2-stages

cascade [5].

Let the jth joint orientation vector denote by pj, where pj = Ajpj-1. Consider an

intermediate vector pn between pj and pj-l:

Pi = Trans(wj_l,dj)Rot(wj_l,Oj)p_ : stage- 1 (1)

p_ -- Trans(xj,aj)Rot(xj,¢j)pj_l : stage- 2. (2)

One set of transformations for each stage, i.e. Trans(w, d)Rot(w, 8), is a block-dlagonal

matrix and can be orthogonally implementable by two 2x2 matrix transformations. Note

that is implementable through an augmented PE, rather two different PEs, observing that

Trans(w, d) is a trivial operation. Then,

pj =

xj

Yj

wj
1

Rot(w_,Oj) : 0

0 : Trans(wi, dj)

Apj. (3)



 .2.2

A
pj (also, similarly for pj ) is decomposed into two blocks, e.g the first two elements of pj

becomes one vector Xj:

= [xj; 1]' = [Rot( ,j, ej);.,j + dj,1], (4)

where w i is for the w-axis component of the vector Pi, and Xj for x- and y-azds components

iotated by 6i. In a simiiar way, for p_t we can choose a rotated vector of y- and w-_s

disjointly through aMs shuffling. Finally, consecutive n-pairs of rotation and translation

e/in be implemented via a 2n-stages c_.scade. We will name each stage as a macro-PE

(0r, an augmented PE), Which _ari be 2n-pipeLined tO _:brnp6se an n-llnks computation

processor. Not to differentiate the two different sets of transformations, w-axis and x=axis

respec[iveiy, We empioy index _ _ uni-_ed-no;a_ons' _6_ _= macro-P_: for a re_er_ee _

W_,t_ei:e are ro[ati0n of 0_ an_[ translation of d-_, -_'i = (x,__,y,__) for an ;nput, and

xi = (zi, y,) for an 6u[put.

Each macro-PE including one Trans(w_, d_) and one Rot(w_, #_) can be implemented_

in F_gtlre i-.a. Gne'joln[ process_s-hown in F-_gure i.b. l_inaUy, for a 6-jolnts sysiem,

Figure Lc sh0wsafully pipelined structure.== :=-:= ===::.... =_:= ...... ._. :

From this point, we will concentrate on implemeh_d{ion o_ a macro-PP. Observing

that Rot and Trans functions are _sjoint each other, ie{ us isolate ihe rotation part at

iSrsL This vec_orr_a-t_on for X_ " (z,,y_) _--the angle t?_ can _e re_zzed by an _tera[ion

Mgorithm c ed CORDIC [4] initead O?c6mi uil/ig irigonomeirle Giaciions and appiyin_

matrix multiplication. CORDIC realizes a vector rotation by a partial sum of micro-angl e

rotations with a pre,fixed Sequence of angles. When the rotation macro-angleis represented
as a sum Ot decomposed m,cro-angies, {.e _, ----_=:_;:

] = == :

X, = fi k_ 1 -tanS_.k X,_l .... (5)

where ki = cosSi,i is a micro-scale composing a final scale factor, explained later. Such

a specific form of the pre-fixed micro-angle sequence as tan -i 2 -i, is attractive for VLSt

implementation since it is composed only of additions, shirtings, and a arctangent lookup

table For the simplicity of notation, subscript i indexing a certain stage will be omitted,

and X,Y and Z stand for abridged notations for those having subscript i.

Non, redundant : The micro-iterations of the conventional (hereafter, it will be called

non-redundant ) CORDIC are 3 linear recursive equations: X recurrence (X-rec.), Y-

rec_rence (Y-rec.) ancl Z-recurrence (Z-rec._ :_:

X[i + i] = __[i] + a,2-'Y[i]

Y[i + 1] = Y[i] - a,2-1x[i]

z[i + 1] = z[i] - ai tan -_ 2 -i

With an initial value of Z[0] = 0_, CORDIC rotates initial values of X[0] and Y[0], to the

last value Xin ] and Y[n], while making Z[i] close to Zero, so that Z[n] is forced to be zero.

With n number of iterations, n-bit accuracy of X and Y in the output can be achieved.



3rd NASA Symposium on VLSI Design 1991 6.2.3

_ !

xi-1 Yi-1 wi-1

d o

I

(1.a)

×0 YO Wo

xi Yi

xi-1 Yi-1 wi-1

I I [ .

,.\ t
ai _ gi

V 'i'

xi Yi wi

(1.b)

d 2

_2

wi

x5 Y5 w5

a 6 "-_ 'an__._____ )_'tl" 6

I"

x6 Y6 w6

(l.c)

Figure 1: CORDIO-based Pipelined Architecture for Direct Kinematics Computation: a.

A macro-PE, One-stage from an orientation to an intermediate, b. 2-stages cascade, An

A, transformation module for a link, c. A complete pipelined Computation Module for

6-links system.



6.2.4

For a known angle, the direction of the rotation, cri can be pre-computed or calculated one

by one on-the-fly using the foUowing selection function.

1 if Z[i] >_ 0_' = -1 if z[_]< o (7)

The CORDIC rotation does not preserve the input norm. To get a rotated vector having

the same length as the input (X[O], Y[OI) , xM(rM) needs to be compensated by a scaling

factor K

K - I[XM'Y[nlltll - _-_
II[X[0I,Y[0]]'II- II _/1+ _r?2 -2i, (8)

i=0

where II.IIstands for the norm of the vector. Note that K is constant for the non-redundant

scheme since ai is in {-1, 1}.

Redundant : Non-redundant CORDIC is slow inherently with delay of O(n 2) due to

its recursiveness and serial dependency, since a micro-rotation with delay O(n) should be

finished before processing the next micro-rotation. Delay performance of a macro-rotation

(n micro-rotations) can be improved from O(n 2) to 0(=) by using redundant arithmetic

(carry-free addition such as carry save or signed-digit addition) to determine the direction

of the rotahon cri, based on an eshmate instead of an exact value [9]. The redu dant

arithmeGgives a delayofO(li ins/endofO(n), and theestimation of direction isnecessary
not to erode the advantage of O(1). This requires the modification of the recurrences and

selection function. This redundant CORDIC scheme produ_ces the output about 4 times

faster than the non-redundant. However, it introduces additional cost since the scale factor

K is variable depending on a macrg-angle by allow_ing &_ to be in {-1, 0, 1}.

Constant-Factor-Redundant : To reduce implementation cost of redundant CORDIC,

it would be good to have a constant scale factor by forcing 5i in {-1, 1}. However, since 6"i

is determined from an estimate, there arises a convergence assurance question. There was

proposed a scheme appending correcting iteration stages at proper positions [10]. Along

to this idea, the number of extra correcting iterations is further reduced by dividing the

micro-iterations (for i - 0 to i = n - 1) into two groups: one group w he_r_e t_he_d_irection of

the rotation is in {-1, 1} for i = 0 to i = n/2 and the other in {-1, 0, 1} for i = (n + 1)/2

to i = n- 1 correcting iterations by 50 % since correcting it eratign is -n0t_ _needed for the

second half of the micro-iterations and we still obtain a constant scale factor K since the

value of K in n-bit precision does not depend on the _r value for (n + 1)/2 < i < (n-- 1). Z-

recurrence also can be modified so that &i is determined quickly by looking at a few most

significant bits. This new scheme is called Constant-Factor-Redundant-CORDIC(CFR-

CORDIC). The modified recurrences and selection functions for the scheme are described

below.

x[i + 1]= x[i] + _,2-'Y[i]
Y[i + 11= Y[i]- &,2-ix[i]

vii + 1]= 2(vii] - _,2' tan-' 2-') (9)



3rd NASA Symposium on VLSI Design 1991 6.2.5

where U[i] is for the implementation simplicity, which is equal to 2_Z[i], and the selection

function is given as follows:

1 if U[i]> 0

or U[i]= 0 n i < n/2 (10)
_i = 0 U[i]= 0 fqi > n/2

-1 if _)[i]< 0

When t fractional bits are used in the estimate value, i.e., _r[i] is computed using t

fractional bits of redundant representation of U[i], the foUowing correcting iteration need

to be included, where the interval between indexes of correcting iterations should be less

than or equal to (t - 1) up to the last iteration index equal to n/2. When the correction

stage is necessary at the jth step of micro-iteration,

uC[j + 1] = U[j + 1]- 2_rY2Jtan-J2 -j (11)

with the direction of the rotation &_ determined from the same selection function of

eq.(10), except being decided based on U[j + 1] instead of _r[i].

So far, we discussed about recursive structures of several CORDIC schemes to imple-

ment the rotation part in the basic PE, as depicted in Figure 1. The PE, augmented by a

translator, necessitates scaling operation at each stage, because shuffling of the output at

each stage makes continuous accumulation of the scaling factor complex to be processed

at the final stage. The scaling operation has been solved either by an explicit way or an

implicit. The explicit way is dividing the rotated vector by a constant, which is known for

the non-redundant, to be calculated while running the micro-steps of CORDIC [4,9]. The

division can be processed by another CORDIC (in a linear mode) or a divider. The implicit

approach reconfigures the sequence of micro-iterations of the CORDIC, eventually to have

a different norm from that without scaling micro-iterations. Scaling micro-iterations target

in general at making the adjusted scaling factor in a form of 2 i or 1, which can be easily set

to the unit size. Each micro-iteration can be composed of i) reduction axis-scaling [11],

ii) repetition of vector-scallng, iii) expansion axis-scaling or combinations thereof [12].

Relevant issues regarding solution search are to be further studied, more than the greedy

method or the decomposed [13]. In summary, the explicit scaling almost doubles the

system complexity, while the implicit increases 25 % for the non-redundant and about 30

% for the redundant.

2 Application to Direct Kinematics

In this section, we design an architecture for the direct kinematics computation, based on

CFR-CORDIC. The data-path is the parallel. To analyze its performance, we will define a

new measure, namely one-positlon calculation time. Via this measure, we will also analyze

performance the bit serial architecture similarly implementable as in



6.2,6

2.1 Performance Measure

Let's define the following parameters.

bi : the number of bits in each input z, y and w

b[ : the number of bits in each output

n t : the number of finks (=6)

fc : the avMlable data shift rate

A : the step time per micro CORDIC iteration

fi : the input bit rate

Additionally, we define a measure parameter TA,

TA= step-time(A) • number of steps,

to compare the performance of various schemes. For a discrete element implementation,

A corresponds to one single external clock time 1/.fc. Note that A varies depending on a

particular implementat_on=0f a macr0-1_E. Without i0SS of generality, let's define the unit

of £x to be 1 for one-bit full addition time. The input processing rate can be alternatively

interpreted as _ :

< i (12)

whiCh_mits the maximum rate-o(_nput vector sampling ..............to be processable:: .... through: an

irnplemented procesSOr.

2.2 Performance Comparison

Bit Serial: A macro-PE using serial data path and arithmetic units for CORDIC is shown

in Figure 2 [6]. Figure 2.a shows symmetric components of a bit-serial PE in x, y and w

representation, and Figure 2.b is for the detail of each block (X-recurrence or Y-recurrence)

employing bit serial arithmetic. W-recurrence is in Figure 2.c, and Z-recurrence in Figure

2.d. The x and y components of the input vector XI-x are taken initially as X[0] and

Y[0], and the initial angie Z[O] is set to the corresp-ondlngjoint a:ngle: After perform_
micro-iteratlons, CORDIC produces n:blt precision Outputs leading to Xi:: :

In the serial scheme without macro-pipehning, denote a basic step-time as A1, which

is equivalent to A. To use one adder recursively n! times to process an n! finks,

Tal =- Ax , n!(b! + bi(bi + Iog2b¢)), :=

where the output has b! bits buffer.

CFR-Redundant Parallel : To increase the throughput of the previous, the bit-

serial PEs can be substituted by those using parallel arithmetic. When parallel arithmetic

and non-redundant CORDIC are adopted, the corresponding parameter becomes

Ta2 = A2 * nl(bi + log2bi)

where A2 equals to the time for one micro-rotation (time for variable shifter plus time for

carry-propagate addition_, approximately 2 log 2 bi assuming fast variable shifter and carry-

propagate adder. T-he step time can be further shortened by adopting CFR-CORDiC,

i



3rd NASA Symposium on VLSI Design 1991 6.2.7

-i " wi-1

x. y, w
I l i

(2.a)

Xi_l(Yi_l)

1-bit adder]-_----

I

[Storag_s_ rcgist_]

,!
x i (Yi)

--¢Y.
1

P. x iv)

wi_ 1 d i

I

W.
l

(2.c)

(2.b)

-1 -i
tan 2

_l-bit adderl'_---

[ _Z[i+I]

(2.d)

i

Figure 2: A bit-serial PE : a. A macro-PE with X-, Y- and W-recurrence, b. Detail of

either block, c. W-recurrence, d. Z-recurrence.



6.2.8

Where a ci_i:ry-fre_ adder (signed-diglt adder) is replaced for eariy-pr6phgaie adder. Figttre

3.a shb_ _. _a_r6-PE_ in components; and Figure 3.b is for the detail of each block (x-

r_eurJr_he_ B_ Y-recurrence) empioying parallel/redundant arithmetic. Z-reeur_renee is in

Hgure 3.e.

x

i-1

x[i]

X- ree.

I X[i+l]

i

Y
i-I

I_ Y-rec.
ti*

Y[i+l]_::

y
i

(3.a) :_

i
-I

1

r

J

i x(i.') i

CP_adder I

X[i+l] (or Y[i+l])

(3.b)

!

O't (_i+l -4

(3.c)

Figure 3- ,_ par_ei/redundant _: a. A macro-PE with X- and Y-recurrence, b. Detail

o_ eSher block, c. Z-recurrence,



3rd NASA Symposium on VLSI Design 1991 6.2.9

Description Processing

rate

TRs

estimate

Bit-serial 1 1200A 600K 2K

(parallel) 4M 12K

Parallel(CFR) 5 500A 2M 6K

(parallel) 10M 40K

Table 1: Time and complexity comparison

In this case, the sign of Z[i] at the ith micro-iteration can not be detected by looking

at the most significant bit since Z[i] is in redundant number representation. To determine

the sign of Z[i] quickly by looking at a few significant bits, CFR-CORDIC uses an estimate

of shifted-Z[i] (U[i]) using t fractional bits. As discussed earlier, the number of fractional

bits used for the estimate also determines the frequency rate of a correcting iteration: more

fractional bits are used, less number of correcting iterations are required. Let the number

of correcting iterations denoted by rI. The corresponding Ta_ becomes

Ta_ = A3 * nf(bi + log2bi + 71)

where A3 equals to the time for carry-free addition plus the time for the maximum of a

selection function and a variable shifter, approximately (1 + log2bl). Note that a practical

number of correcting iterations is much smaller than bi, e.g. 1 for the 16bit resolution.

Hence, we can approximate Ta 3 to be that for the redundant without a correcting iteration.

For a case, bi = 12, b! = 16, the estimated Ta is summarized in Table 1. To get first

order estimates of available speed and area, we use a figure that one full adder (also one

bit shifter) requires approximately 50 TRs and one 20nsec clock cycle [14].

3 Conclusion

We have examined various kind of CORDIC schemes as a macro-PE module for the

direct kinematics processor, and showed that its micro-level regularity is suitable for

VLSI implementation, depicted along with specific schematics which include the conven-

tional non-redundant, the redundant and the Constant-Factor-Redundant schemes. The

cost-effectiveness of selected architectures has been analyzed using bit-serial, parallel or

pipelined structure with respect to the time and the number of modules required, to

compute one location of the end-effector for a 6-1inks manipulator, given a set of angle

measurements The comparison table exhibits the CORDIC-based robotics processor as a

prospective solution in VLSI to be used for a wide range of kinematics calculation require-

ment, compromising the size versus speed.



6.2.10

References

[t] J. Denavit and R. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms

Based on Matrices," Journal of Applied Mechanics, pp.215-221, 1955.

[2] P. Nanua, K. Waldron and V. Murthy, "Direct Kinematic S01u_tion_ 9_f _n Stewart Plat-

form," IEEE TranJ on Robotics and Automation, Vol 6, No 4, pp.438-444, Aug. 1990.

[3] D. Moldovan and G. Lee, "On the Use of Parallel Architectures for Robotic Manip-

ulators: The Kinematics Problem, '_ Int. J. Robotie_ and Automation, Vol 1, No 2,

pp.47-53, 1986.

[4] J. Walther, "A Unified Algorithm for Elementary Functions," AFIPS Spring Joint

.... Computer Con!erence, £p.3_9--385, !971.
" : s

[5] C. Lee, "CORDIC-based Architectures for Robot Direct Kinematics and Jacobian

Computation," 3rd Int. Syrup. Intelligent Control, pp.609-614 , 1988.

[6] R. t!arber et. al.,"Bit-serial CORDIC Circuits for Use in a VLSI Silicon Compiler,"

Int. con,: Circuit and SyS_e_i_:_*_._84-157, i_89. _:: ._..... : .... .

[7] M. Kameyama, T. Matsumoto a_d H. Hideki, "Implementation of a ttigh performance

LSI for Inverse Kinematics Computation," IEEE lnL Conf. Robotics and Automation,

pp.757-762, ].989.

[8] H. Kung, "Let's Design Algorithms for VLSI systems," Caltech Conf.= VLSI, pp.65-90.
!979.

[9] M. Ercegovac and T. Lang, "Redundant and On-Line CORDIC: Application to Matrix

trianguiaHzation and SVD," IEEE Trans. on Computers, Vol. C-39, No 6, pp.725-740,

June 1990.

[10] N. Takagl, T. Asada and S. Yajima, "Redu_n_d__ant CQ_RDIC methods w_th_ a constant

: scale i'actor for sine and cosine computation", Submitted to iEEE Trans. on Computers,

1989.

[11] G. Haviland and A. Tuszynski, "A CORDIC Arithmetic Processor Chip," IEEE Trans.

on Computers, Vol C-29, No 2, pp:68-79, Feb. 1980.

[12] J. De!osme , "VLSI !mp!em_ntation of Rotations in Pseudo-Euclldean Spaces," Proc.

of ICASSP_ pp.927-930, 1983. :......

[13] I. Lee and T. Lang, "Matrix triangularization by fixed-point redundant CORDIC

wit h _Co_sta_t s_cal._e factor,Proc_ SPIE Conference o_ Advance d Sig_na! _Proee,,ing

Algorithms, Architectures, and Implementations, July 199{),

[14] J. Harding, T: Lang and J. Lee, Comparison of Redundant CORDIC Rotation

Engines," Int. Conf. Computer Design 91, Oct. 1991.



3rd NASA Symposium on VLSI Design 199I

N94-18359
6.3.1 -

Simplified Microprocessor Design

for VLSI Control Applications

K. Cameron

NASA Space Engineering Research Center for VLSI System Design

University of Idaho, Moscow, Idaho 83843

Phone: 208-885-6500 Fax: 208-885-7579

Abstract- A design technique for microprocessors combining the simplicity

of RISCs with the richer instruction sets of CISCs is presented. They utilize

the pipellned instruction decode and datapaths common to RISCs. Instruc-

tion invariant data processing sequences which transparently support complex

addressing modes permit the formulation of simple control circuitry. Compact

implementations are possible since neither complicated controllers nor large

register sets are required.

1 Introduction

The design of microprocessors has evolved considerably since the introduction of the first

microprocessor in 1971 [3]. Traditional microprocessors are extremely complicated ma-

chines that support hundreds of instructions and a dozen or so addressing modes. The

dominance of such complex instruction set machines (CISC) has recently been challenged

by much simpler processors which support only the most commonly used instructions.

These processors are known as reduced instruction set computers (RISC) [8]. Tradition-

ally, RISC processors:

• Support a small (reduced) instruction set of simple instructions which represent the

most commonly used operations,

• Process instructions at the rate of one instruction per system clock cycle,

• Have a large on board register file for instruction or data cache.

The SPARC architecture is a scalable family of traditional RISC processors which was

developed commercially. The architecture is deeply pipelined and depends heavily upon

the compiler to efficiently map the register set and avoid forbidden instruction sequences

[1]. Recently, the meaning of the term RISC processor has become quite blurred [6]. The

IBM System/6000 purports to be a RISC implementation, but supports 184 instructions

[5], which is a considerably larger instruction set than that of the 68020 microprocessor

[7], which is generally considered to be a CISC machine.

The design methodology described here is targeted for applications which must be

implemented in a small amount of circuitry (i.e. as a cell on a larger integrated circuit),

while retaining medium to high levels of performance. The approach taken is to implement



6,3.2

a system which adheres to most, but not all, of the design concepts of a traditional RISC

m_ac .lfine. Key points of the design approach investigated _are h'sted below. They wiU each

be described in more detail later.

• The processor supports a very small (reduced) instruction set. Only vital or fre-

quently used operations are supported directly.

• The instruction set is orthogonally partitioned. As nearly as possible, bit fields in

instructions mean the same things for all instructions. All addressing modes are

supported in the same manner for all instructions.

• All instructions are processed using invariant execution seque__ces. This means tha_

information flows through the datapath in precisely the same manner for all instruc-

tions.
=-

• Both the datapath and the associated controller are deeply pipelined. The use of

invariant execution sequence s permits the construction of very deep, yet simple pro-

cessing pipelines.

• Only a small internal register set is supported. The processor registers are memory

mapped, allowing them to be .accessed and updated with general memory reference

instructions.

• The support of relatively complex addressing modes is import.ant if the internal

register set is small. Implemented consistently across the entire instruction set, they

add little to the overall comp!e_ty of the m¢chi_n¢,

Though a specific processor was implemented, the design methodology followed may

be used to implement alarge .number of different RISC-like processors, each with different

size-performance trade-offs.

2 Execution Cycle Pipe Hn e

The data flow strategy of the microprocessor is the first item which must be designed. This

i_ncludes data flow to and from memory as well_ _as throug h t!_e d atapat h of the processor

itSelt: The performance=iequSedof the :p÷oc ssorarlves the c olces made at tl s point.
Different cost-performance ratios can be achieved through the use of different data flow

strategies. A few of the possib!e tradeoffs are hsted below:

• Processor word size?

• Separate address and data busses used to .access memory?

• Separate instruction fetch and program data stores?

• Separate address ge_aeration and data processing units?

Multiple data processing units?

• Pipeline depth?

, Dat.a/instruction cache?



3rd NASA Symposium on VLSI Design 1991 6.3.3

Ram Access H Fetchl AddrO

Decode Instl

Alu Addrl

Adder

Fetch2 Addrl Fetch3 Addr2

Inst2 Inst3

_ 0p(}---Addr2--Opl--Addr3-
............................

Addrl Opl Addr2 Op2

Fetch4

Op2
Addr3

Ad6r 

Inst4

Addr4

Op3

Figure 1: #P Execution Sequence

• Number of internal data/address registers?

• Maximum number of instructions?

Since the design implemented was to have moderate performance yet be compact, it

was decided to build a processor with a 16 bit word, separate address and memory busses,

shared data and instruction stores, combined address generation and data processing units,

a deep pipeline, no cache, and a small set (4) of general registers. It was further decided

that processor registers would be memory mapped, so separate instructions would not have

to be provided to access either the processor registers or the registers associated with the

accompanying IO subsystem.

Though shallow pipelines such as was used with RISC II [11] are relatively simple to

design, it was decided from a performance stand-point that the machine should be deeply

pipelined. A deep pipeline permits the construction of a high-throughput processor, since

each stage of the pipe can operate independently on different portions of the problem

at the same time. Deep pipelines, however, have the undesirable characteristic that any

irregularity in the processing sequence for different instructions can lead to either the need

for extremely complicated locking circuitry [5,1] or else the definition of a large number of

forbidden instruction sequences to prevent data collisions. It was, therefore, decided that

all instructions should share the same (though perhaps, a truncated) processing sequence.

The memory execution sequence finally decided upon is shown in Figure 1. Several key

points of this processing sequence are:

• Each RAM access is pipelined twoclock cycles deep: This greatly eases all timing

paths associated with RAM accesses.

• Data associated with an instruction "wraps" through the ALU/Adder twice. Once

to calculate the associated address and once to process data. This strategy keeps the

datapath completely utilized at all times.

• Data processed during one instruction is available for subsequent processing on the

very next instruction.

• One instruction is executed every two clock cycles.



6.3.4

Mode Invoked Description
Direct s = 0 Effective Address is part of instruction.

s = 10f.fset _ 0 Effective Address is contents of referenced

stack pointer plus signed offset.

Indexed

Stack s= l Offset=O If instruction implies a read, the referenced

pointer is pre-incremented. The Effective

Address is the new stack pointer contents.

If the instruction implies a write, the Effective
Address is the contents of the references stack

pointer. The stack pointer is post-decremented.

Figure 2: _tP Addressing Modes

is

l

RegisterSelect

StackRelative lOBitAddres s

Op Code _ b____t I Address/Offset ]

/ -llBitAddress

StackSelect

Figure 3: #P in.struction Format

3 Instruction Types

0ncedata fiowstrategy-_sb-een determined, the ]nstructi0n set and addressing modes of

the processor must be selected. Here, a wide variety of posss_i_fies-_presents itse_._nce

the processor implemented is intended for an interrupt driven environment, it was decided

that the machine should be stack oriented and provide good support for stack based oper-

ations. The addressing modes summarized in Figure 2 were finally decided upon. Direct

referencing of memory locations with a pointer contained in the instruction itself provides

simple access of memory mapped registers, global variabies and targets for normal jump

and jump subroutine instructions. The indexed with offset mode provides support for jump

tables, arrays, stack oriented local variable access, and subroutine argument passage. The

auto-decrement and increment modes support implied push and pop operations as a part

of any instruction, ease the placing of arguments on the stack for passage to subroutines,

and allow the return from subroutine instruction to be implemented as a special case of

the jump instruction.

Figure 4 summarizes the instructions set which was selected. Each instruction can be

operated in any addressing mode. The actual instruction format is shown in Figure 3.



3rd NASA Symposium on VLSI Design 1991 6.3.5

Op Code

0100

IIII

1000

0000

0010

0011

1100

1110

0110

Mnemonic

ld

st

jsr

imp
and

or

add

sub

Register

a/b
a/b

a/b
a/b
a/b
a/b
a/b

Description

Load Register

Store Register

a/b

Jump to Subroutine

Absolute Jump
Bitwise And

Bitwise Or

Addition

Subtraction

Bitwise Complementnot

0101 xor a/b Bitwise Exclusive Or

1101 cmp a/b Skip next instr if not equal

1010 tst

0111 a/bshl

Bitwise And, then skip next if 0

Shift Left

0001 shr a/b Shift Right

1001 lds s/t Load Stack Register

1011 ien -- Enable/Disable Interrupts

Figure 4: #P Instruction Set

Since the arithmetic unit already provides an adder and a zero detect circuit for the im-

plementation of the base instruction set, virtually no additional hardware in the datapath

was required to implement the addressing modes. If a hardware multiplication instruction

had been included in the instruction set, it would have been possible to utilize it during

address generation to provide very sophisticated support for array accessing.

The requirement that all instructions be implemented with the same processing se-

quence places severe restrictions on the type of conditional statements that can be pro-

vided, however. A test and skip next instruction pattern was selected since it fits the

required schema and was possible to implement without disturbing the pipelined flow of

instructions. No retry of instructions is necessary, since the results of the test are always

known in time to abort the effects of any subsequent instruction.

4 Implementation

4.1 General

The processor was designed using structured logic design techniques in a custom environ-

ment. High operating speeds and compact layouts were achieved through the extensive

use of pass-logic.

The use of an orthogonally partitioned instruction set and an instruction invariant

processing sequence resulted in extremely small and simple control circuitry. Consequently,

the speed of a machine cycle is limited only by delays in the datapath- not by propagation



6.3.6

Cyclel: PC --_ AR AR v__ AR

Cycle2: RAM _ MO PC ++

Cyc!e3: MO _ Pipe2 SP(--) _ Pipel 0 _;_ Pipel

Cycle4: Pipel "_P AR Pipe2 "_P AR Pipel/Pipe2 _ SP

A/B/PC q-_ MI SP(--) _ AR

Cycle5: RAM _ MO MI --_-_, RAM

Cycle6: MO _;_ Pipe2 A/B _;_ Pipel 0 _;_ Pipel

Cycle7: Pipel _ A/B Pipe2 _ AlP Pipel/Pipe2 "dd;----2

Figure 5: #P Register Transfer Sequences

delays _n the _contro_er. _ _ -

The processor itself is a simple design. Approximately three man months were required

to design the circuit and verify its iogi_al correctness through extensive logic simulations.

During this time a software model of the processor was also written to aid logic verification

and a macro-assembler was written for software development. Four man months were

required to implement the layout an d verlfy !t s cqr_rectn_ess.

The processor was implemented in a 1.6#m CMOS process and subsequently shrunk to a

1.0pro process due to size considerations. It runs at a clock frequency of 28MHz under worst

case processing assumptions, 140deg C junction temperature, and 4.1V internal supplies.

The processor was completely functional on first silicon. Under typical conditions, it Should

run at nearly 60MHz, which corresponds to an instruction rate of 14MIPS worst case and

30MIPS typical. Currently, the limiting speed path is associated with the zero detect

circuit. A redesign of this circuit would likely result in yet higher system performance.

4.2 Control

The upper bits the data bus are fed into the control section where they are pipelined

__p arM!e! to the data=pass!ng t__hroug__hthe da!apath. The instruct!on decode and control of

the datapath is simple, since both control and data are pipelined in an equivalent m_n-

ner. The individual control lines to the datapath are decoded directly from the pipe!j'ned

instructions. The Iog_c of the control section fits on one C sized sheet of logic. I_t Consis-ts

of four stages of pipeline registers, 61 NAND gates (most of which are 2 to 4 input gates),

10 NOR gates, and various inverter/buffers. It contains no state-machines except those

required for interrupts and memory cycle stealing by the IO subsystem-- ann t_aese are

exclusively single bit state-machines.

4:3 Data Path : : :

The datapath consists Of a registerstack and a pipelinedAdder and ALU/Figure 6 is

a signal flow diagram of the datapath. The M Bus is used for all memory mapped data



3rd NASA Symposium on VLSI Design 1991 6.3.7

M

O

b Add a

Pipe2

Pipel

ALU

MI Q P

Figure 6: #P Register Stack

transfers. The P Bus drives the Address bus of the RAM through a clocked register, AR,

located in the pads. The I bus is the data input bus from the memory, and the Q bus is

the data bus to the RAM. The I and Q bus are combined into a single bi-directional bus

at the chip pads through the MI and MO registers. (MI receives data from RAM during

a read and MO outputs data to RAM during a write.) The datapath operates as follows.

The instruction fetch address is driven from either the program counter or the secondary

program register onto the P (address) bus. Two clock cycles later, the instruction arrives

on the I bus, where it is fed through the ALU. At this time the Op Code portion of

the instruction is stripped off and the remaining bits are used to form either an absolute

address or and offset for the stack relative mode of operation. The results are docked

into the Pipe registers. Next clock cycle, this address/offset is either passed unaffected

through the ADDER (absolute addressing mode) or added to the contents of the selected

address register (SP or TP) (indirect addressing mode), and the results are driven onto the

P (address) bus through a tri-state driver. If the instruction implies a write to memory,



6.3.8

the appropriate data is driven onto the Q bus from either A,B or PC. If the instruction

implies a read the requested data enters the datapath via the I bus two clock cycles later

and is processed by the ALU and ADDER in succession, at which time the results are

loaded into the appropriate register. An RTL description of the data transfers comprising

the data processing sequences utilized to implement the entire instruction set is shown in

Figure 5. It should be noted again that though this processing sequence is seven clock

cycles deep, processing of a new instruction starts every other clock cycle.

The ALU and adder are both implemented using pass logic. The ALU consists of a

single cell replicated 16 time, each of which consists of only 23 n-channel pass gates and

9 inverter/buffers. The ALU performs all bitwise operations and provides a zero detect

function which is used in the conditional skip instructions, as well as the detection of the

auto increment/decrement addressing modes. The OpCode (figure 4) bit patterns were

selected such that the upper bits of the instructions themselves become the control lines

for the ALU with minimal remapping_

The configuration selected to implement the ADDER is a modified transmission gate

conditional sum scheme [10]. The COnfiguration is small, regular, and very fast.

4.4 IO Subsystem

Though not a primary topic her%it should be mentioned that a complete IO subsystem

was implemented and integrated with the microprocessor described here. It consisted of a

DMA subsystem which was responsible for_:t_he i_uik transfer of data around the chip, two

serial ports for low speed data transmission and acquisition, a parallel port for the transfer

of data to and from an external microprocessor, as well as a prioritized interrupt/event

passage system.

5 Conclusion

Present day integrated circuit fabrication processes support levels of integration adequate

for the construction of on'board microprocessor based controllers which Occupy only a

small portion of the available circuit area. Such processors can be readily designe d for

different cost-performance t-radeoffs, as required for specific applications. The outlay of

engineering time need not be excessive and the use of high-level languages for code devel-

opment makes the underlying instruction set transparent to the firmware developer, and

eases code migration, deveiopment- and supporL

References

[1] A. Agrawal et.al., "The Scalable Processor Architecture (SPARC)," COMPCON '88

-Pr0ceecl_ngs,-i-088 ,-pp( _8 -2-83_.= ............. ::--_- .....

[2] It. Bakoglu, T. Whiteside, "RISC System/6000 Processor Architecture," IBM RISC

System/6000 Technology, SA23-2619, IBM, Austin TX, 1990, pp. 8-15.



3rd NASA Symposium on VLSI Design 1991 6.3.9

[3] D. Curtin, L. Porter, Microcomputers: Practices and Procedures, Prentice-Hall, 1986.

[4] G. Grohoski, J. Kahle, L. Thatcher, C. Moore, "Branch and Fixed-Point Instruction

Execution Units," IBM RISC System/6000 Technology, SA23-2619, IBM, Austin TX,

1990, pp. 24-32.

[5] P. Hester, "RISC System/6000 Hardware Background and Philosophies," IBM RISC

System/6000 Technology, SA23-2619, IBM, Austin TX, 1990, pp. 2-7.

[6] J. McLeod, "Tough Choices Ahead in Microprocessors," Electronics, May 1989, pp.

70-78.

[7] MG68020 3$-Bit Microprocessor User's Manual, 2nd Edition, ISBN 0-13-566860-3,

Prentice-Hall, Englewood Cliffs, NJ, 1985, p. 1-6.

[8] D. Patterson, C. Sequin, "A VLSI RISC," IEEE Computer, vol. 15, No. 9, Sep 1982,

pp. 8-12.

[9] C. Rowen et.al., "RISC VLSI Design for System Level Performance," VLSI Systems

Design, March 1986, pp. 81-88.

[10] A. Rothermel, et at., "Realization of Transmission-Gate Conditional-Sum (TGCS)

Adders with Low Latency Time," IEEE JSSC, Vol. 24, June 1989, pp. 558-561.

[11] R. Sherburne, M. Katevenis, D. Patterson, C. Sequin, "A 32b Microprocessor with a

Large Register File," Digest of IEEE International Solid-State Circuits Conference,

Feb 1984, pp. 168-169.



|



3, d NASA Sympasi,,m on VLSI Dcsign 1991

A Modified Reconfigurable Data Path Processor

G. Ganesh, S. Whitaker and G. Maki 1

NASA Space Engineering Research Center for VLSI System Design

University of Idaho, Moscow, Idaho 83843

Phone: 208-885-6500 Fax: 208-885-7579

Abstract- High throughput is an overriding factor dictating system perfor-

mance. In this papers a conflgurable data path processor is presented which

can be modified to optimize performance for a wide class of problems. The

new processor is specifically designed for arbitrary data path operations and

can be dynamically reconfigured.

1 Introduction

High performance computers are increasingly in demand in areas of weather forecasting,

structural analysis, etc.. These often require architectures which are different from the

standard von-Neumann's machine also called the Standard Stored Program Computer.

The stored program computers are designed to be general purpose and is not optimized for

any specific problem. Fully customized architectures can be optimized to achieve maximum

performance for a specific problem, but such processors cannot usually be adapted to

produce solutions to different problems.

Modern technology opens new dimensions to the designer of high performance systems,

by providing low cost VLSI modules which have high computational throughput. For a

given functionality, there are two major dimensions of performance:- Delay and Through-

put. High throughput is the most critical factor in real time processing of massive amounts

of data, for example in Digital Signal Processing, Data Base operations, etc.. Since gen-

eral purpose parallel computers cannot offer real time processing speeds, special purpose

computers become the only appealing alternatives.

Special purpose processors can be of two types: 1) Dedicated Processors and 2) Recon-

figurable/Programmable Processors. While the former are characterized by high processing

speeds, inflexibility, long design time and high design cost, the latter have advantages of

greater flexibility in coping with changes in the object problem, system specification and

greater design economy with some reduction in throughput.

This paper presents a general purpose accelerator which is an enhancement over [1],

that allows a variety of data path configurations, each characterized by its own topology

of activated interconnections and hence applicable to a wide range of applications.

This configurable architecture combines the general purpose advantages of the stored

program machine with the optimization of a fully customized architecture to achieve max-

imum performance for a broad class of problems. Every functional unit, data path and

tThis research was supported ( or partially supported ) by NASA under Space Engineering Research
Center Grant NAGW-1406.



6.4.2

Input Port

Programming Path

P

Data ,-------- State

Path Controller I

Outp!t Port

Figure 1: Block Diagram

Handshaking

Control

control structure can be individually optimized for a given algorithm. The architecture

presented is capable of operating in parallel, pipelined or sequential modes. The user

configures the data path through programming. The architecture can be altered during

operation by reprogrammlng orcan beinitialized and fixed for dedicated processing or can

be attached to a host processor.

The reconi_gurable processor differs from the stored program computer in the sense

that there is no instruction fetch-decode-execute cycle. Moreover, an operation can be

executed every clock pulse in every data path_ element.

2 Processor Design

The data path and the control structure have been designed to allow sequential, pipelined

or parallel operation. The processor is configured as a set of identical data path elements

with an overall controller. The top level block diagram of this processor is shown in Figure

i. There are two major components: the data path, which is an ALU-register stack to

manipulate the data, and the state controller, which controls the register stack. The actual

hardware configuration of the data path is specified during the programming of the State

controller.

2.1 Data Path _:_ :: : ...... :............. :: ........

Each data path element is as shown in Figure 2. Let there be m data path elements, each

n bits wide. Direct communication between each data path element is a_n es-s-_en_t_ia!feature

to achieve plpel_ne or parallel Operation, Therefore, to allow all possible register to register

communications , the data path.... bus must be m × n bits wide. This complete connectivity

resuitsin the flexible reconfigurabillty, but also limits the numberof data path elements.

Each data path element consists of a Multiplier Accumulator (MAC) which multiplies

two eight bit numbers and also adds two sixteen bit numbers to the product. (a.b+c+d),

This output is stored in a globally accessible register of the data path element. Also

_=

=_



3rd NASA Symposium on VLSI Design 1991

1
lI

I MuxA  uxB

I
Logic1

p2trlUnit Unit

a b

MAC

L

C

a.b+c+d

Figure 2: Data Path Element

6.4.3

contained within each data path element are two dedicated registers, which are used for

operations local to that data path element. The addition of these dedicated registers is

one of the improvements over [1]. This avoids the use of an entire data path element for

the purpose of storage only. Since the area of a data path element is constrained by the

rn × n interconnect bus the addition of these registers should have little impact on the

overall chip area.

The data path also contains a set of ALU and selector units. The ALU can implement

an arbitrary arithmetic/logic operation. The operations of the first logic unit is as shown

in Table 1. The selector unit selects the output of its respective multiplexors or the output

of the respective dedicated register as shown in Table 2. The m to 1 multiplexors can

select the output of any of the m globally accessible registers. The MAC operates on the

output of the selector unit and the logic unit to allow a mixture of arithmetic and logic

functions. Table 3 shows example of ALU operations that can be performed. CI is the

carry in data bit.

Each globally accessible register is controlled as defined in Table 4. The dedicated

registers are controlled as shown in Table 5.

The control word for each data path element structure is shown in Figure 3. For 16

data path elements, the control word is 33 bits wide.



Logic Control

0000

0o01

Logic Operation

A AND B

A AND B'0010

0011 A

0100 A' AND B

0101 B

0110 A XOR B

0111 AORB

1000 A NOR B

1001 A XNOR B

1010 B'

101 i ...... A'NANDB

11()0 A'

110! ANANDB'

1110 A NAND B

liil "" 1

Table 1: Logic Unit 1 Control

MC Selector Output

00 A Mux

0! B Mux

10 Dr1

11 0

T_b!.e 2: Set ector U,nit .! 9ontro!

Logic Unit SelUnit ICI Output

0000

1111

0011

0101

-I010

A

A

A

A
1100

1010 A

1

0

1

0

0

1

A+I

A+I

A+I

A plus B

l's complement A - B

2's complement A

2's complement A - B

Table 3: Example ALU opc raLi_ons

MuxA IMuxB MuxC tMuxD [L-0:ic-1 ILoglc2 ] Sell 1S¢12 t Reg I C D,

ct,,/ ctr, I Ctr, /Ct,l/Ct,,/ ct,, ICtr]tCtrllCtrll' tCt
2_28 2_24 21_20 1416 I:_12 9[8 716 s/4 ;_L21

Figure 3: Dat__ Path Element Control Word

F)



3rd NASA Symposium on VLSI Design 1991 6.4.5

RC1 RC2

0 1

1 0

1 1

Register Function

Hold Present Data

Load MAC Output

Shift MAC Right and Load

Shift MAC left and Load

Table 4: Global Register Load Control

Drl Register Function

0 Hold Present Data

1 Load Mux Output

Table 5: Dedicated Register Load Control

2.2 Control

The state controller specifies the control words for each data path element. The hardware

compiled control words are contained in a control store memory as depicted in Figure

4. The output of each word from the control store drives each data path element. A

total of 536 bits are needed in each control store word to control the data path elements

in a 16 element, 16-bit data path structure. Program control within the control store is

implemented with a program location counter. The control store can be of an arbitrary

depth; here, it is depicted as 256 words deep. To perform a jump within the control store,

an 8-bit jump address is provided in each control store word as depicted in Table 6.

The control store must be specified prior to operation. This specification (hardware

compilation) can be achieved through the input port, 16 bits at a time. After the control

store is specified, the processor is ready to operate in real time.

3 Operation

The control store word defines the operation and the source of data (registers) for each

data path element. The output of any pair of registers R4 and Rj, i_] = 0,1,2,...,15 can be

input to a data path element. In general, the operation can be specified as

R_[ALUoperation]Rj --_ Rk (1)

33 bits 33 bits ... 33 bits 8 bits

Data

Path

Control

Word

Cell 0

Data

Path

Control

Word

Cell 1

Data

Path

Control

Word

Cell i

Data

Path

Control

Word

Cell 15

Program
Counter

Address

Table 6: Control Store Word



6.4.6

O
V
E
R
F _-
L
O
W

O

V
E
R
F
L -----
O
W

L
0
G _--
I
C _--

Input

CELL 0

CELL i

CELL 2

CELL 3

CELL 4

CELL 5

CELL 6

CELL 7

CELL 8

CELL 9

CELL 10

CELL 11

CELL 12

CELL 13

CELL 14

CELL 15

ou :u 

16
I

CONTROL
STORE

256
Process
Control
Words

of
536
Bits

Each

Figure 4: Control Store and Data Path

P
R
O
G
R

536 A
"-+-- M

M
I

N
G

R
E
G
I
S
T
E
R

iPI
!RI
I O I

--+-_ A i
M I

8 O ITT I

E 1
R 1

L



3rd NASA Symposium on VLSI Design 1991 6.4.7

which means that the result of an ALU operation upon the contents of any register pair

Ri and Rj can be placed into register Rk. This is true for any and all registers in the data

path and all operations occur simultaneously. Since each data path element can function as

an independent element, the entire data path can be configured to operate in the sequential,

pipelined or parallel modes. The controller also specifies the next state of the controller

and provides handshaking for external input and output control functions. The memory

can be ROM for dedicated processing or RAM or EPROM where field programmability

is desired. Depicted in Figure 4 is a feature where the control store can be programmed

via the input data port. The entire control store can be initialized in a 16 bit word serial

manner.

The control store is specified prior to operation. Once the control store is specified, the

processor executes at the rate specified by the system clock. With static cells, the system

clock can range from d.c. to the maximum allowable by the IC process.

3.1 Examples

Consider the following Digital Filter examples to illustrate the use of this processor. The

general second order difference equation is

-Zly( - 1)- 2).

This implements an IIR filter. For an FIR filter the equation simplifies to

(2)

= + - 1) + 2). (3)

To implement the FIR filter in the architecture presented in this paper, let Dr61 contain

s0, Drsl contain al and Dr41 contain as as shown in the simplified block diagram of Figure

5. Also let R4, Rs, R6 and R0 be initially reset. The operations can be described in a

register transfer language where each P_ is a control state that defines the data transfers

that take place when P_ is active.

P0: Data --_ Ro

PI: Ro • Dr81 _- R_ -_ Re, Ro" Drsl q- R4 -"* Rs,

Re • Dr41 --_ R4

Assuming that constants are preloaded into the registers and that 2's complement

arithmetic is used, the control word for each data path element (R_) is shown in Table 7.

Each control state P_ represents one parallel control word; the portion of the control word

for each Ri is shown on a series of lines for the sake of simplicity. Register control for all

other registers not shown in Table 7 , the register control l_its in their control words are

00, indicating no operation, for that control state, P_.

There are a total of 5 operations that occur in 2 clock pulses. If this processor operated

at 20 MHz, 50 million operations per second would be performed.



6.4.8

I? _o)tC_2R4

I °

ly(n)

Figure 5: FIR Filter Block Diagram

__[

State Reg MuxA MuxB MuxC MuxD

Po Ro A
P1 R4 R o

Rs Ro R4
Re Ro R_ -

]

State Reg

Po Ro
P1 R4

R5
R6

ALU1 ALU2 SC1 SC2 CI RC

1111 0000 00 1! 0 01
0011 0000 10 11 0 01

o011 0oo0 lO oo o ol
00il 000o lO o0 0 Ol

Table 7: FIR Filter Control Word Programming



3rd NASA Symposium on VLSI Design 190I 6.4.9

State Reg MuxA MuxB MuxC MuxD
Po R0 A -
P1 R2 R0 - Re -

Re R0 - Rr
R_ R0
R10 R9
R9 R9 R_ R8

Rs R9 - __

State Reg ALU1 ALU2 SC1 SC2 CI RC

P0 R0 1111 0000 00 11 0 01
P1 R_ 0011 0000 10 00 0 01

Re 0011 0000 10 00 0 01
R7 0011 0000 10 11 0 01
R10 1111 0000 00 11 0 01
R9 0011 0101 10 00 0 01
R8 0011 0000 10 11 0 01

Table 8: IIR Filter Control Word Programming

Dr21 I _o

Dr81[ al

Dr71 I a2

Dr91 t 81

R19 t y(n)
Ro [ y(n-1)

Rs I y(n-2)

For an IIR filter, consider the following register assignment. A register transfer language

description of the operations to implement the IIR filter equation would be

P0: Data -_ Ro

PI: R0 • Dr21 + R6 -_ R2, R0 • Drel + R_ ---* R6,

Ro • Dr71-* RT, Drsl • R9 --* R8,

R2 + Rs + R91 • R9 "* Rg, R9 --* Rio.

Assuming again that constants are preloaded into the registers as 2's complement num-

bers and that 2's complement arithmetic is used. The control word for each data path

element is shown in Table 8. There are a total of 9 operations that occur in 2 clock pulses;

operating at 20 MHz, 90 million operations per second would be performed.

4 Summary

A new architecture has been presented which allows for sequential, pipelined, or parallel

operation. A control-data path structure consists of m identical data path elements. The

data path elements can be independently specified to allow parallel or pipellned operation.

The control of the data path is specified by the control store memory. The processor can be



6.4Ao

a dedicated stand alone machine or attached to a general purpose processor. As an attached

ptoeesstn-, it can be dynamically modified to assurne different data path configurations if the

control store is RAM based. It is proposed that this architecture is a first step in producing

a _ocessor tha{ allOWS the dlgital designer the same kind of flexibility in altering data path

eonfigui.ations as field programmable gate arrays offer alternatives to the logic designer.

Aekrl_ledg_ent This research was supported in part by NASA under grant NAGW-

1406 and grant NAGS-1043.

References

[i] G. Maki, S. Wh]ta_er and IG: _sh, ___ Reconfigurabie Data Path Processor",

Proceedings of the IEEE ASIC Conference, Rochester N'Y', Sept., i991.

- ?

_:_ ,

: : ....... ?



3rd NASA Symposium on VLSI Design 1991

N94-18361
7.1.1

Systolic Array IC for Genetic Computation

D. Anderson

Hewlett Packard

Northwest IC Division

1020 NE Circle Blvd.

Corvallis, OR 97330

daryl@hp cvcan.cv.hp.com

1 Introduction

Measuring similarities between large sequences of genetic information is a formidable task

requiring enormous amounts of computer time. Geneticists claim that nearly two months

of CRAY-2 time are required to run a single comparison of the known database against

the new bases that will be found this year, and more than a CRAY-2 year for next year's

genetic discoveries, and so on.

The DNA IC, designed at HP-ICBD in cooperation with the California Institute of

Technology and the Jet Propulsion Laboratory, is being implemented in order to move

the task of genetic comparison onto workstations and personal computers, while vastly

improving performance.

The chip is a systolic (pumped) array comprised of 16 processors, control logic, and

global RAM, totaling 400,000 FETS. At 12 MHz, each chip performs 2.7 billion 16 bit

operations per second. Using 35 of these chips in series on one PC board (performing

nearly 100 billion operations per second), a sequence of 560 bases can be compared against

the eventual total genome of 3 billion bases, in minutes -- on a personal computer.

While the designed purpose of the DNA chip is for genetic research, other disciplines

requiring similarity measurements between strings of 7 bit encoded data could make use

of this chip as well. Cryptography and speech recognition are two examples.

A mix of full custom design and standard cells, in CMOS34, were used to achieve these

goals. Innovative test methods were developed to enhance controllability and observability

in the array. This paper describes these techniques as well as the chip's functionality.

This chip was designed in the 1989-90 timeframe.

2 Goals

The main project goal was to produce a device, for a larger system, that would prove

the new computing architecture. This meant integrating as much functionality as was

reasonable, with respect to cost. This includes as many processors, as much RAM per

processor_ and as many other desired functions as possible. Performance was a lesser

concern, largely due to disk access being the initial system performance llmiter_ and also

because the architecture provides the main performance breakthrough. Limiting power

dissipation was a lesser, but real concern as well.



7.1.2

_t the outset of the project, a standard cell implementation was envisioned that might

i_httdn 10 processors, each with 32 bytes of RAM on a i cm square device. In the end, a

_ii_[0in solution provided 16 processors, each with double the functionality and 128 bytes

o_ _lM,/_ii a roughly 1 cmx 1.2 cm device.

F unctlonailty

The primary rune[ion oi" the sysf.ern, Comprised largely from a series of DN'A chips, is to

10ca{e regions oi" similarity between strings of genetic bases, represented in ASCII by the

characters; A, i_, G, and T. A terse description of the method for achieving this end, is as

follows.

First, the primary stringis convert by an external processor, silcii {iaat eacii char_i_ie_

lit ilia{ s{}]_srep|aced by i'otir m_c/i scores, one ]'or each of [lie i'0ur iaioSSibIe characters

that it may be compared against in the Secdn-da-rV-siring_ TheSe-scores, {'or-each cilara_i_

{ha{ each RAiV[ Con{a_ns _-]e-four bytes represen{{ng t_e_]`our possible seoresekuse_d_y

in{erae_on of_-_arac[ers in _ sec_ry_st_ng-wR-h__ng_ character of the primary

String. Each processor's RAM is 128 bytes, enough to accommodate full ASCII. Now, each

_oeessorbehaves-as_-[heagent_ofone _racter|n={he primary _i_l_en_; {_e ien:gt_ _

the primary string is initially limited to the the number of processors in the system (16 x

number of DNA chips). Through software the length can be expanded without limit, by

me[hod ot" part_homng the -= " ...... _"...... _" "- string and using sufficient over_p.

Secondly, a number of constants are loaded into each chip by the external system

processor, such as; ch_p locatmn w_thm the p_pellne, how to deal w,th gaps that naturally

Occur within genetic sequences, and others.

At this point, the pipeline begins to function. The secondary string enters the front of

the pipeline and is passed from one processor to the next on each successive do ci/. _ach

character within this stringis Used as an address-{o the local RkM o]_thecu£r/_ i_/_s-_

visited by that individual character. By this method, the appropriate score is retrieved

from the local RAM for the interaction between the characters of the two separate stririgs.

Along with the former occurr=ing, {he follow [h--r_e equations are processed withFh Fhkt

same clock cycle, in each processor, and _#'g{erlnan, Besi Suhequence e_a

Al_o,'_th_.):

Hij - maz{O, H_-x,j-_ + s(ai, bs) ,Eij, Fi,j}

with

E .s= - + -

= - + -

where F,H and b are pipelined, E is fed back within the processor, ul_,VE,UF, and

VF are constants dealing with sequence gaps, and s(ai,b_) is the score produced by the

intersection of [he two characters from the different strings.

m

%



3rd NASA Symposium on VLSI Design 1991 7.1.3

Additionally, each processor monitors its H value, which represents quantitatively the

similarity between strings, and detects its peak. If this peak exceeds a programmed thresh-

old, this value, as well as the location of this occurrence within the secondary string, is

piped along through the remaining processors on the given chip and then stored in the

chips global FIFO RAM. The range of this location value limits the secondary string to

4 million characters. However with use of external software, an unlimited string can be

applied.

This process occurs simultaneously in all processors on each chip, until the entire sec-

ondary string has been piped all the way through, or the external system processor in-

terrupts. The equations and peak detector are implemented with five adders and seven

comparators; the values (UE + VE) and (uf + VF) are provided as constants.

When a value has been stored in the global FIFO RAM, the chip signals the external

system processor, and at the system processor's convenience, reads that data from the chip

into a global system RAM. This is the raw similarity information desired from the system.

Of course, if any chip's FIFO nears overflow, a system interrupt is issued, by that chip, to

pause the entire pipeline until the RAMs can be emptied.

4 Design Challenges

Technical challenges included; performance, power, and density concerns, as well as prob-

lems pertaining to pad switching noise and testability.

By custom designing most circuitry for near maximum density, lower power and higher

performance fell out as by-products. Most N channel devices in the pipeline were sized at

5# wide and 1# long. The small devices reduced power consumption, as well as greatly

improved the circuit density. By careful floorplanning to minimize interconnect capacl-

taace_ chip performance was improved over that of a standard cell approach. One of the

key sub-modules within the processor is a 16 bit adder. At 426# by 215# (896 FETs),

the custom adder is one seventh the size of its standard cell implementation; at 4 mW, its

power consumption is one sixth; and at 11 nS, its performance is improved by more than

two fold over the standard cell solution.

While the conservative design goal of 12 MHz does not seem worthy of CMOS34,

consider two of the paths to be traversed in the 83 nS Cycle; 1) Register -- 16 bit signed

addition 6 x (16 bit signed compare and select greatest ) -- 5 gates -- Register, and

2) Register- address RAM -- 16 signed bit addition -- 3 x (16 bit signed compare and

select greatest) -- 5 gates -- Register.

The next area of concern was with pad switching noise. This resulted from being bound

to a 208 lead Quad Flat Pack, with 190 signal pins, leaving only 18 power pads. While

having a full synchronous design helped in some aspects, it also created the possibility

of having all 65 pipeline outputs and all 32 global data bus pads switch simultaneously.

Additionally, several other system pads could be switching as well. It is helpful that all

pipeline input signals are latched on the rising elk, while the pipeline outputs do not change

until a number of gate delays later. However, several volts of supply noise could easily be



?.I.4

geiaerated by switching the standard pads, causing erroneous inputs and oiltputs on the

global system pads. Additionally, latchup was a concern.
@he solution was to create three modified pads and use an expanded power distribution

scheme. All pad input sensors (T_?L level Schmitt) were connected to one Vdd pad and

tWO Gnd pads; 124 inputs total. The output drivers for pipeline outputs, and global data

bus were connected to 4 Vdd pads and 5 Gnd p-_ds; 97 outputs total. 2"he rem_nlng

global system pads, capable of causing system interrupts, were connected to their own

isolated pair of power pads. Lastly, the chip core and output pad stage-ups were placed

on two pairs of power pads.

While this helped to isolate the noisy circuitry from sensitive circuitry, the noise spikes

on the dirty power bus from output switching, were still too high. Several things were done

to help reduce the noise. First, the drivers for the 65 pipeline outputs were greatly reduced

so that the rise time on the Sentry 15's 60 pF load would be 40 nS worst case. These outputs

Will normally see only 7-10 pF in the product, as the output pad communicates only with

the neighboring chip's input pad.

The global data bus pads created anoth6r problem in that their loading depended

directly on how many DNA chips were placed in the system.as they all connect directly

to one another. In the initial system, this load would be 275 pF. Since the 32 data bus pads

were by far the largest contributor to noise, and because their load could vary, another

scheme was employed. The data pads each contain two sets of output drivers; one small

and one large. A signal to the pad determines whether the large drivers are used in parallel

with the small ones, or whether the small drives are used alone. A control register bit is

used to turn off the larger driver in the eventtk_t the da_;a bus had a small capkc_t_ve

loading, or that the noise from the larger drivers was simply unacceptable (in which case,

the system elk rate would have to be reduced). The rise time for a 275 pF load with the

large drivers is 20 nS, worstcase, and 75 nS without those drivers.

Additionally, care was taken to turn on output drivers slowlyi about a 3 nS to 3, nS

rise time on the driver's gate. Skewing of data to the pad drivers also helped to reduce

The last major challenge was in the area of test. Standard methods for testing the part

in its normal operating mode were seen to be near impossible. The controllability and

observabilRy of nodes deep in the pipeline of 16 processors was very near zero. Since each

processor interfaces to the previous processor through a register bank, scan testing seemed

to be the obvious solution. However, with about 150 register bits in each processor, and

a total of 16 processors and one additional pipeline register buffer, the full scan vector

length would be over 9.500 bits. With a Sentry 15 limited to 9.56k total vectors, this would

provide only 100 scanv-- ectors, with n0 vectorme-m-ory avaiiabie _or testing i:he 29,_ bytes

of RAM, nor the control iogic. Several thousand scan vectors were desired for testing the

processors. - - -
The solution was to take advantage of the fact that all of the processors are identical,

and therefore given the same input scan vector, will produce the exact same res_t_.nt

output vector in the register J3ank" of the pipeline's next Stage. The met_oc_ t_teni _s

_o scan in a vector that is only one processor register bank long (150 bits), into all 16



3rd NASA Symposium on VLSI Design 1991 7.1.5

processors simultaneously. After clocking the device once in normal mode, as in standard

scan methodology, the 16 resultant vectors are scanned out of the processors and onto

16 independent lines of the global data bus, readable from the chip's data bus pads.

Additionally for testing in the product, all 16 scan outputs are connected, on chip, to a

equality function. If, when in test mode, all of the 16 scan outputs are not equal, then

an error pin is activated for notification of the external system processor. The system

processor can then set another pin on the errant chip so that the pipeline data coming on

chip is diverted around the 16 processors, to the t_nal buffer register, thereby fixing the

whole pipeline at the cost of those 16 processors.

5 Results

First prototypes of the DNA chip were tested in Spring of 1990. Several timing problems

were found in chip functions that had not been completely simulated by the designers.

Second prototypes produced perfect parts. JPL currently has a circuit board 16 DNA

chips (a total of 256 processors) running and interfaced to a workstation.

6 Acknowledgments

• Ed Chin and Mike Yoo of JPL for their design work on the DNA chip.

Tim Brown, Paul Liebert, and Bobbie Manne of HP-ICBD Design Center Services

for helping with artwork generation.

• Joe Casprowiak, Joan Long, Jimmy Packer of the HP-ICBD layout group.

• Fred Perner and Lynn Roylance of HP Labs for initial work on the DNA investiga-

tion.



v



N94-1S362

3rd NASA Symposium on VLSI Design 1991
7.2.1

High-Performance Multiprocessor Architecture

for a 3-D Lattice Gas Model 1

F. Lee, M. Flynn and M. Morf

Computer Systems Laboratory

Stanford University, Stanford, CA 94305

Abstract- The lattice gas method has recently emerged as a promising discrete

particle simulation method in areas such as fluid dynamics. We present a very

high-performance scalable multiprocessor architecture, called ALOE, proposed

for the simulation of a realistic 3-D lattice gas model, H_non's 24-bit FCHC

isometric model. Each of these VLSI processors is as powerful as a CRAY-2 for

this application. ALGE is scalable in the sense that it achieves linear speedup

for both fixed and increasing problem sizes with more processors.

The core computation of a lattice gas model consists of many repetitions

of two alternating phases: particle collision and propagation. Functional decom-

position by symmetry group and virtual move are the respective keys to efficient

implementation of collision and propagation.

1 Introduction

High performance computing has become a vital enabling force in the conduct of science

and engineering research and development. In particular, simulations based on computa-

tional fluid dynamics are less costly and much faster titan complex wind tunnel tests. In

the past few years, the lattice gas method [3] has emerged as an attractive, robust and

promising discrete particle simulation method for fluid flow simulations with complicated

boundary conditions, that are difficult or impossible to solve with other methods. Var-

ious standard fluid dynamical equations, including the Navier-Stokes equations, can be

obtained from lattice gas models after proper limits are taken [4].

The core computation of a lattice gas model is inherently suitable for execution on

scalable parallel computing systems, without requiring floating point operations. Increas-

ing amounts of computing power is needed to solve large scale simulation problems. It

is believed that simple and practical application-specific computers (or co-processors) can

achieve performance orders of magnitude higher than existing "general-purpose" supercom-

puters, that invariably focus on floating point operations. This belief has been confirmed in

the case of two-dimensional simulation, but not in the case of three-dimensional simulation,

which is much more important and challenging.

All existing special-purpose lattice gas computers such as CAM-6 [12], RAP1, RAP2 [1],

and LGM-1 [6], deal with two-dimensional lattice gas models. Until today, only one

other design, CAM-8 [10], proposed by Margolus and Toffoli, attempts to deal with three-

dimensional models, but this proposal is limited to 16 or fewer state bits per lattice node.

tThis work was supported by NASA Ames Research Center under contract NAGW 419.



7.2.2

Yet we need to simulate models with 24 bits or more per node in order to achieve real-

isticresults in studying complex phenomena such as turbulent flow [2]. ALGE is to our

knowledge the first special-purpose machine proposed to tackle a realistic 3-D lattice gas

model.

2 Lattice Gas Models

In order to keep this paper self contained, we repeat some of the material from our previous

publication [7], on which this paper is based.

In a lattice gas model, space and time are discretized. Time is divided into a se-

quence of equal time steps, at which particles reside only at the nodes of the lattice. The

evoluti-oncons!sts o ftw0 - alternatlng phases: (i) Propagation: dur_ag on e _time s_ep, eklch

particle moves from one no_deto another along aliKk of the lattice according to its veloc-

ity; (ii) collision: at the end of a time step, particles arriving at a given, node coRjde and

instantaneouslyyacquire new Veiocities. _ne properties of ;he lattice not only govern the

propagation phase, but also significantly constrain the collision phase, because the collision

-ru/es"mu_ ffdvethe same symmetries as the lattice [4]. "-: _-::--*_

The state of a node can be denoted by the bit vector b = (bl,... ,bn), where bl -- 1 if a

particle with the corresponding velocity v i is present 2 , and bl -:- 0 otherwise. Let b(x, t),

and b'(x, t) be the states of the node at position x and time t before and after the collision

respectively. The collision phase specifies that, for all x and t,

b'(x, t) = C(b(x, t)) (1)

where C is a deterministic or non-deterministic n-input n-output boolean collision function.

The propagation phase specifiesthat, for all x and t,

bi(x + vi, t + 1) = b_(x,t) (2)

An obstacle such as a plate, a wedge or an airplane wing is decomposed into a series

of continuous links which approximate]ts geometrical shape. At nodes which represent

an obstacle, particles are either bounced back or undergo specular reflection. This can

be handled by adding one or more obstacle bits to the state of a node and adjusting the

collision function appropriately: -

Before simulation, the states of the nodes are initialized according to the initial distri-

bution of particle densities and velocities. After simulation, nodes within a volume of tens

of nodes on each side are averaged to compute the macroscopic density and momentum.

There are two types of boundary conditions on the lattice edges we are concerned with.

The first type is the periodic boundary condition: the particles exiting from one edge are

reinjected into theother edge in the same direction. The secondtype, related to a wind-

tunnel experiment, Consists]np_vlding a flux of fresh particies 0none side of the lattice

and allowing an output flux on the other side. In this paper, we focus on the first type of

2In this paper, Roman and Greek indices refer respectively to labels and components.

mm



3rd NASA Symposium on VLSI Design 1991 7.2.3

\

\

\

Figure 1: The pseudo-four-dimensional FCHC model. Only the neighbors of one node are

shown as connected.

boundary condition, because it is basic: it requires no special treatment for nodes on the

edges, as there are no edges in a wraparound lattice space. The second type can be dealt

with as a simple extension.

2.1 Three-Dimensional Lattice

The particular lattice we are most interested in is the FCHC lattice used in three di-

mensional simulations [4,11]. A FCHC (face-centered hypercubic) lattice consists of those

nodes, which are the points with signed integcr coordinates (xl, x2, x3, z4) = x such that

the sum xl + z2 + zz + z4 is even. Each node x is linked to its 24 nearest neighbors x' such

that the vector x' - x corresponds to one of the following 24 values:

(+1,±1,0,0), (±1,0,±i,0)] (±1,0,0,+1),

(0,±1,±1,0), (0,±1,0;±1), (0,0,±1,±1). (3)

These 24 nearest neighbors form a regular polytope. With time steps normalized to 1, the

vectors in (3) are also the 24 possible velocities of the particles arriving at or leaving from

a node.



7.2.4

The pseudo four-dimensional FCHC model is derived by projecting the four-dimensional

FCHC lattice to three dimension so that the fourth dimension has a periodicity of 1. Each

node of a regular cubic lattice is a node in the model. Figure I shows the neighborhood of a

node: along the gray finks, connecting to 12 neighbors, at most one particle can propagate,

with component v4 = 0; along the thick black finks, connecting to 6 neighbors, up to two

particles can propagate, with components v4 = :kl.
=

2.2 Isometric Collision Rules

Associated with the FCHC lattice is the isometry group G of order 1152. Roughly speaking,

an isometry is a symmetry operation such as rotation and reflection about the origin.

The isometric collision rules [5] require that

1. Every collision is an isometry: the output velocities are images of the input velocities

in an isometry.

2. The isometry depends on the momentum only: the momentum of the input state is

computed, and then normalized by taking advantage of the symmetries, and finally
used for classification.

, The isometry is randomly chosen among all optimal isometries: this is why non-

determinism comes into play. (An optimal isometry is one which minimizes the

viscosity of the lattice gas, so that higher Reynolds numbers can be reached.)

3 System Overview

This is an updated version of the design of ALGE as presented in i7]i ....The machine

is organized as an array processor, which serves as a special purpose high performance.....

computing engine to a host computer. The host computer downloads the problem (data)

into the engine and omoads the engine-produced S0iUtion. The host provides the User

interface to the computing engine and performs the pre-processing and post-processing

phases of the simulafion_ ......

Figure 2 shows a 4x4 Configuration of ALGEI The processors are connected as the

nodes of a 2-D toroid. Each identical processor 3 (p) has its own local memory (M). In a

simulation the 3-D problem space is decomposed into non-overlapped equal-sized partitions

such that nodes with the same Z-coordinates map to the same memory space, and adjacent

partitions map to adjacent memory spaces.

4 Processor Architecture

Figure 3 shows the functional block diagram of the processor. The processor contains

the following units: Several collision units, an address generator, a transposer, a switch, a

3It may contain several processing elements (PE) as referred in [7].



3rd NASA Symposium on VLSI Design 1991 7.2.5

1

Figure 2: A 4x4 configuration of ALGE

memory address register (MAR), a memory data register (MDR) and a control.

The collision units can be viewed as the "arithmetic" units of a "superscalar" processor.

Each unit is capable of computing one collision function per cycle. The address generator

contains a register file and some modified adders. It is responsible for generating the

proper address sequences for reading and writing data from and to memory. Each local

memory can supply one word of k bits per cycle. The n bits of any given node is stored at

a different word address. Hence, it takes n cycles to read all n bits of each of the k nodes.

The transposer is a two-way shift register array. Actually, there are two transposing buffers

so that one can be emptied (written back to memory) and filled (read from memory), while

the other is accessed by the collision units. The switch exchanges data with neighboring

processors if necessary. At any time, the processor either reads or writes. Since the

procedure is deterministic, and the access sequence is data independent, all operations

(AG, RD, etc.) are deeply pipelined in order to achieve maximum throughput.

The parameter k is is the number of partitions mapped to a processor. The optimal

choice of k depends on n, the number of bits per node, the delay through the switch, and

the number of I/O pins and area of the VLSI implementation. Some typical numbers we

are considering are: n = 25 (1 obstacle bit), k = 192 for a processor with 4 collision units.

4.1 Collision Unit

The properties of a lattice not only govern the propagation phase, but also significantly

constrain the collision phase, because the collision rules must have the same symmetry as

the lattice [4]. How the underlying symmetry group of a lattice gas model can be exploited

to derive compact and high performance processing elements to handle collision functions

of potentially exponential complexities (O(n2")) was posed as a major challenge in this area

of research (see the Preface of [3]). The FCHC isoroetri_c model proposed by H_non [5] was



7.2.6

Control

Address

Generator

Collision

_nits

Transposer

Switch

Address Da t a

_Data

Figure 3: Functional block diagram of the processor

the first rea]-24-bit three-dimensional model with a detailed Specification Of an optimized

nongd-e-thr_n[stic collision function. Therefore, it was chosen as our first case study. A

VLSi architecture iror the FCHC isometric model has been designed and implemented as

an ASIC. We have shown that a 4000 gate chip can replace the equivalent of 4.5 bi_pn

bits (rather than 384 million bits due to non-determinism) of a lookup table u_sed to solve

this problem. Because the architecture is derived by considering the symmetry properties

rather than by brute force logic synthesis, it can be generalized to other classes of_ttice

gas models. We present the ma_n ideas {n this paper. (Please see [8,9] for more details).

H_non's isometric algorithm [5] shows how the output state of a node is computed as

a non-determi'nistic function of the input state:

1. Compute the momentum of the input state

2. Normalization: Apply the appropriate isometries (symmetry transformations) to the

input state and the momentum, so that the momentum is normalized.

3. Collision: Choose at random one of the optimal isometries of the class to which the

normalized momentumbelongs, and apply this isometry.

4. Denormalizati0n: Apply the isometries applied in step 2 in reverse order to obtain

the output state.

The application of an isometry to a state is the most frequent and important operati6n.

An efficient impleraentation of this operation is thus most crucial. Cayley's theorem states

that every group is isomorphic to a permutation group, hence it is not tOO surprising that

Conditional appliCati0n of isometries can be implemented as conditional permutations,

which in turn map to simple multiplexers. In essence, the_ algorithm_. can be= viewed_ as_ a

description of how to generate the right control signals to permute the input state bits.



3rd NASA Symposium on VLSI Design 1991 7.2.7

[ Momentumadder I i

16

I Momentum normalizer

Collision rule table _ I !

_4 it i

Randomizcr

Input state _ 24

1

State normalizer I

;[ 2,

State collider [

State denormalizer ]

•
Output state

Control generator Pemmtation network

Figure 4: A collision unit

The organization of a collision unit (Figure 4) follows classical lines: the control path

consisting of a momentum adder, a momentum normalizer, a small collision rule table,

and a randomizer; the data path is a conditional permutation network composed of a state

normalizer, a state coUider and a denormalizer (inverse-normalizer). The overall feed-

forward character of this unit makes it easy to design a highly pipeIined version with a

proportional increase in throughput.

A CMOS field programmable gate array implementation of the unit with a non-

pipelined latency of 460 ns has been completed. A CMOS gate array implementation

is estimated to have a non-pipelined latency below 50 ns. A collision unit capable of 20

million node updates per second (MNUPS) or more is clearly feasible. This is comparable

to CRAY-2's performance of approximately 30 MNUPS [11].

4.2 Address Generator

As large simulation problems require the use of a huge amount of memory, memory chips

can easily become the dominant cost factor of the system. Our solution avoids the common

but expensive alternative of double buffering the complete memory space, while retaining

a high degree of flexibility in the choice of lengths of each dimension of the (simulation)

problem space. This is made possible by the virtual move addressing mechanism, which

exploits the true data dependency of the computation steps involved. Data movement

implied by propagation but not by communication requirements can thus be eliminated.

The address generator contains a number of registers and an arithmetic datapath

(adder) to generate the complex sequence required.



7.2.8

4.2.1 Virtual Move

Although the FCHC models are Our major concerns, the mechanisms described below

apply to a larger class of models with other possible velocities. The following section is

written with general notations so as to be valid for any D-dimensional space and arbitrary

velocity. = ....

The propagation equation (2) seems to suggest that at every time step, state bits of

all the nodes have to be moved. However, a closer examination reveals that the equation

actually represents an invariant relationship. If we choose to observe in a.frame of reference

moving at the velocity v i with respect to the rest frame of the lattice, the particles with

velocity v i are obviously stationary! Hence, there is no need to actually move the bits in

memory, as long as we keep track of the Galitean transformation. The coordinate x i of the

moving frame is related to the rest coordinate x by the transformation:

x i = x vit (4)

Suppose the space-time point (x,t) corrcsponds to (xi,t), then the point (x + v_,t + 1)

corresponds to ((x + v i) - vi(t + 1),t + 1) - (x vit,t + 1) - (xi,t + 1). Hence, (1) and

(2) can be written as

b'(x_,t) - C(b(x',t)) (5)

bi(xi,t + 1) - b',(x',t) (6)

If we interpret x i as the physical address used to address memory module i, then x

can be treated as the virtual address. Equation (6) says that we do not have to -m0-ve

the bits--at all in t_e-propagation phase. We refer to this technique as :v#tual move.

The cost of implementing virtual move is-to }lave a slightly more coralS]]cared a_ddress

generation scheme. For each virtual address x, we need to generate n physical addre-sses,

x / (i = 1,... ,n) according to _(4). However, only One address has to be generated per cyclel

if we access one bit plane at a time-. Multiple bit planes can be stored in the same memory

space by interleaving.

4.2.2 Muitl-dlmensional Modulo Adder

The transformation (4) requires D modulo subtractions for each v i. How can one proceed

to implement the address generators in liardware?

Suppose we have a wrap-around lattice space of dimension D, implied by the basic

:type of periodic boundary condition (see section 2). Equation (4) can be written as _

x' (x_ ' (a 1,... ,D) .....= - v_,t) rood n_ =

= + (-v t rood ft.)) mod n.

= + d rood (7)

where n,_ is the length of z_-dimension, and

d (t) = -v t rood (8)



3rd NASA Symposium on VLSI Design 1991 7.2.9

Note that d_ has to be recomputed only once per time step by addition:

d'o(t+ 1)= (a'.(t)+ mod roodno (9)

In order to use conventional RAM, we need to map x (x i) to a linear address. We

choose the conventional one-to-one mapping

A:{0,1,...,nl}× {0,1,...,n2}X{0,1,...,nD--1}_{0,1,...,nln2"''nD--1}

such that D-1

A(x) --- A((Xl,X2,...,XD)) = Xl-4- x2nl-l- ... + XD H na (10)
ot'_ l

_..=1 m.. = m. TheAssume that all n,'s are powers of 2, such that m_ = log 2 n_ and D

mapping A can then be performed trivially by concatenating the binary representations of

x such that x,,+l is on the left of x,. Similarly, we can obtain the linear address of d i. Let

a = A(x), and b -- A(d'), and define e as

0 if j = E_=_ m,, for some a E [O,D - 1] (11)ej = 1 otherwise

The purpose of e is to mark the boundary bits of dimensions so that carry-out from lower

dimensions would not be propagated to higher dimensions. The value of e does not change

during a simulation.

We can calculate all D components of x i according to (7) in one step by usifig a multi-

dimensional modulo adder, which takes three m-bit inputs, a, b, and e, and computes the

sum as s = A(xi). The adder can be built according to the new definitions ofp;, propagate,

and sl, sum:

pi -- (el V bi) e, (12)

si = a, @ bi _ ciei (13)

and our usual definitions of gl, generate, and ci, carry:

gi = ai bl (14)

c0 = 0 (15)

Ci+l = gi V plci (16)

Hence, this modified adder can be implemented in various ways, such as ripple carry

adder, carry lookahead adder, or carry select adder, as deemed appropriate for the system

requirement and implementation technology.

4.2.3 Example

Let us illustrate the idea by a small example. Suppose we have the 2-D square lattice

with n = 4 bits per node, and v 1 = (1,0), v 2 = (-1,0), v 3 = (0,1), and v 4 = (0,-1).



7.2.10

4 5 6 7

t=O

0 1 2 3

__ t=l

l

0 1 2 3 7 4 5 [ 6 5 6 7 4 0 1 2 3

|

4 5 6 7 3 0 I[2 1 2 3 0 4 5 6 7

b3 bl b2 b4

Figure 5: State bit propagation

(0,0) 0

(1,0) 1

(2,0) 2
(3,0) 3

(0,1) 4

(1,1) 5

(2,1) 6
(3,1) 7

Figure 6: Address mapping A

A(x) [ A(x') [ A(x 2)

0 3 1

1 0 2

2 1 3

3 2 0

4 7 5

5 4 6

6 5 7

7 6 4

A(x 3)

4

5

6

7

.......

1

2

3

A(x 4)

4

: r- •

Figure 7: Virtual to real address translation for t = i



3rd NASA Symposium on VLSI Design 1991 7.2.11

bit

position

3210

_ e

(x= (3,0))

(d2=(l,0))

(x2=(0,0))

Figure 8: Operation of a multi-dimensional modulo adder.

L

_ TransDose

Buffer ]

CollisionUnit ]

. L

Figure 9: Operation of the transposer

The lattice (problem) space has 8 nodes with nl = 4 and n2 = 2. In figure 5, each box

represents a physical memory location, tile linear address mapping of the coordinate of

which is given in Figure 6, as calculated by (10). At t = 0, the virtual address x and

physical addresses x i (i = 1,2,3,4) for any given node are the same. At t = 1, they are

different, as governed by (4) and shown in Figure 7. The numeric label within each box

represents a binary value. Suppose we are interested in the bit plane of b2. The label "3"

of the b boxes represents the binary value of b2 at A(x) = 3 just after collision at t = 0. At

t = 1 just before collision, the label "3" of the b2 boxes is at a different location, because

the bit has been moved to the left by one position, where A(x) = 2. However, the move

can be avoided if the virtual address 2 is somehow translated into the physical address 3, so

that access to A(x) -- 2 becomes access to A(x 2) = 3. Figure 8 shows how the translation

can be computed by a multi-dimensional modulo adder.

4.3 Transposer

It contains 2 transpose buffers, to be filled and emptied alternately. Figure 9 shows the

operation of the transposer. It affects memory addressing, data structure to store the array.



7.2.12

04 05 06 07 14 15 16 17

b2 - t=O

00 01 02 03 i0 ii 12 13

05106 07 14 15 16117 04

oo
Partition 0 Partition 1

Figure iO: Propagation of bits o{ b2 across partit{on§ _:

During the i-th cycle, the i-th bits o{ the k words are read and shifted into a transpose

buffer. At the end of the n cycies, the n bits of one node are shifted out per cycle. A

collision unit takes the bits as input, and the output is written back to the buffer. It acts

as a circular shift register, with-multiple (u) co_sion units, multiple updates (co_sions)

can be executed i_ parallel per cyclel Th_s update continues for k]u cycles until all k

nodes are processed. They are then shifted out bit-by-bit to memory. While one buffer i_

busy acting as an n-wlde circular shift register to serve the collision units, the other can

be emptied and refilled just in time £o {-a-i_e_the _urn, if k is chosen appropriately.

4.4 Switch
=:

Updating a node at the border of a partition requires reading values from one or more

adjacent partitions, we need to know when to select data bits from which par{{t{0n_: ....

According to (2), we know where the neighboring nodes are in the problem _p_e_: :

b,(x,t + 1) = b',(x - v',O (17)

: Letus define three=coord{nate systems, namely, the global, partition, and local coord{na{es

such that they satisfy the following relationship:

x G = Px p + x L (18)

....w_ere: P {Sa _{agoi_a-l'-mfiir]x w_tla po,,_ =--n,_, £n-d the _'oIlowing concT_ions_are sabered:

L 0< c < :po : (10)0<z_ _z_ <p_, 0<z_

Alternatively, we can write for any a

n v L rood n_ (20)G rood n,,p,_ ,_(z_ mod p,_) + z,_X a

Then we can show that for _,iiy- _, =

- " ...... " _ L i n_)) rood pc,):_- (z_ v_) mod n_ (21)(z_ - v:) rood n_p_ = _.((_f + bound(O, x_ -- v_,

Z



3rd NASA Symposium on VLSI Design 1991 7.2.13

where bound is defined as

bound(L,k,U) = {

-1 ifk<L

0 ifL<k<U
m

I ifk>U

(22)

L iFor any given v _ bound(0, x_ -v_,n_) is either non-negative or non-positive. Hence,

it is only necessary to distinguish whether the value is zero or non-zero.

In equation (21), the partition coordinate determines the source partition, and the

local coordinate determines the bit within a partition. Since the machine is synchronous,

L have the same value for all partitions. This exactly matches theat any one time, all x a

requirement implied by (21).

Figure 10 shows an example. It shows the data distribution at t = 1 for b2 for the same

example shown in Figure 5. The first digit of a label represents the partition coordinate

mapping, while the second one represents the local coordinate mapping.

The function bound can be computed as a carry-out of the multi-dlmensional modulo

adder. Let a = A(xL), d_ = -v ia, and e as defined before, as the inputs to a multi-

-v_, _)1 is exactly the carry-outdimensional modulo adder, then for each c_, ]bound(0, x L i n

bit which is to be blocked so that it will not flow across the dimension boundary. In

Figure 8 the carry bit c2 = 1 indicates that the local virtual address 3 of a partition maps

to the local physical address 0 of its adjacent partition, as shown in Figure 10.

5 Summary

We have outlined a number of unique architectural features of a very high performance

pipelined array processor dedicated to lattice gas simulation. The architecture is truly

scalable in the sense that it achieves linear speedup for both fixed and increasing problem

sizes with more processors. It is necessary and possible to take advantage of the special

properties of the application to design application-specific computers that are a thousand

times more powerful than existing supercomputers.

The driving limitation of ALGE is memory bandwidth. This situation becomes more

severe as the processing elements run faster and the clock cycle gets shorter. This may be

an ideal project for the use of high density mounting and packaging technology such as

multiple chip modules.

Current work is focusing on resolving finer issues of design and implementation with

the goal of building a prototype system.

The promise of powerful VLSI processors for digital wind tunnels opens up the potential

for desk-top and onboard applications.

References

[1] Andre Clouqueur and Dominique d'HumiSres. R.A.P., A Family of Cellular Automa-

ton Machines for Fluid Dynamics. Helvetica Physica Acta, 62:525-541, 1989.



7.2.14

[2]

[3]

[4]

K. Diemer, K. Hunt, S. (2hen, T. Shimomura, and G. Doolen. Density and velocity

dependence of reynolds numbers for several lattice gas models. Lattice Gas Methods

for Partial Differential Equations, pages 137-177, 1990.

Gary D. Doolen, editor. Lattice Gas Methods [or Partial Differential Equations, vol-

ume IV of Santa Fe Institute Studies in the Sciences of Complezitv. Addison-Wesley,
1990.

Uriel Frisch, Dominique d'tt_umi_res, BrosI Hasslaclaer, Pierre Lal!emand, Yves

Pomeau, and Jean-Pierre Rivet. Lattice Gas Hydrodynamics in Two and Three Di-

mensions. Complez Systems, 1(4):649-707, 1987.

Michel H6rton. Isometric _Collision Rules for the Four-Dimensional FCHC L_ttice Gas

Complez Systems, 1(3):475-494, June 1987.

Steven D. Kugelmass. Architectures for Two-Dimensional Lattice Computations with

Linear_pee_dup. PhD thesls,_Prlnceton University, June 1988.

[7] Fung F. Lee and Michael J. Flynn. Architectural Mechanisms to Support Three-

Dimensional Lattice Gas Simulations. Third Annual A CM Symposium on Parallel

Algorithms and Architectures, pages 115-122, July 1991.

[8] Fung F. Lee, Michael J. Flynn, and Martin Morf. A VLSI Architecture for the FCHC

Isometric Lattice Gas Model. Technical Report CSL-TR-90-426, Computer Systems

Laboratory, Stanford University, April 1990.

[9] Fung F. Lee, Michael J. Flynn, and Martin Morf. Design of Compact High Perfor-

mance Processing Elements for the FCHC Lattice Gas Models. Proceedings of the

Fifth SIAM Conference on Parallel Processing for Scientific Computing, March 1991.

[10] Norman Margolus and Tommaso Toffoli. Cellular Automata Machines. Lattice Gas

- Methods for Partial D_fferential P_quation,, pages 219-249,1990......

[11] Jean-Pierre Rivet, Michel H6non, Uriel Frisch, and Dominique d'Hurni_res. Simulat-

ing Fully Three-Dimensional External Flow by Lattice Gas Methods. Proceedings of

the Workshop on Discrete Kinetic Theory, Lattice Gas Dynamics and Foundations of

Hydrodynamics, pages 276-285, September !988.

[12] Tommaso Toffofi and Norman Margolus. Cellular Automata Machines - A New En-

vironment for Modeling. MIT Press, 1987.



3rd NASA Symposium on VLSI Design 1991

Verification of VLSI Designs

P. J. Windley

Department of Computer Science

University of Idaho

Moscow, ID 83843

m 208.885.6501

Abstract: In this paper we explore the specification and verification of VLSI

designs. The paper focuses on abstract specification and verification of func-

tionality using mathematical logic as opposed to low-level boolean equivalence

verification such as that done using BDDs and Model Checking. Specification

and verification, sometimes called formal methods_ is one tool for increasing com-

puter dependability in the face of an exponentially increasing testing effort.

1 Introduction

Reliable computer systems are becoming increasingly difficult to engineer. The successes of

IC fabrication technology have put VLSI engineers in the position of building dependable

computers that are orders of magnitude more complex than the largest computers of even

a decade ago. With even larger numbers of transistors promised in the near term, research

is being done to make the reliable engineering of complex VLSI designs practical.

There are two complimentary approaches to computer reliability: fault tolerance and

fault exclusion. The former is most useful in handling dynamic faults occurring during

system operation due to component failure or other unexpected events. The latter is a

static process intended to remove errors in design and implementation before the computer

system is in service.

Testing and simulation are well-known fault exclusion techniques. Testing and simu-

lation are used extensively in the design, implementation, and manufacturing of computer

systems. The problem is that testing and simulation can never exhaustively cover every

possible situation that the circuit might encounter. Pygott [13] states

"A comparatively simple 8-blt microprocessor such as the ZS0 has 208 internal

memory elements and 13 input signals, meaning that the circuit is capable of

22_1 different state transitions. Even if a transition could be simulated every

microsecond, it would take 1053 years to examine all the possible changes (this

is far larger than the age of the universe)."

Clearly, only a tiny fraction of the possible state transitions can be tested. This situation

has led to VLSI devices going to market with design faults which were not caught in testing.

One possible answer to the inadequacies of testing and simulation is hardware syn-

thesis from hlgh-level circuit descriptions written in an appropriate hardware description

language (HDL) such as VHDL [7]. Synthesis from an HDL description certainly has much

promise. Textual descriptions are easy to store, manipulate, and process. Also, synthesis



7,3.2

tools are likely to be reliable since the social process of hundreds of users using a synthesis

program tends to exorcise any latent bugs.

Unfortunately, synthesis of VHDL circuit descriptions is not sufficient for dependable

computing. As a case in point, consider that high-level programming languages have been

in use for 20 years and programs still contain numerous errors. There are a number of

reasons why this is so:

1. HDLs are generally verbose making them hard to read.

_2. HDL constructs are_not usury amenable to ¢?rm_=analys!s. Thus it !s nearly

impossible to show that a particular description has desired properties.

3. Constructs that can be synthesized are frequently not abstract enough to be of_u_s¢

as system-spec_fi Cations.

4. Contrary to what the marketers of synthesis systems would have one believe, circuit

descriptions outside of a small subset of a HDL cannot be synthesized. This is par-

ticularly true of abstract descriptions. One need not search further than a multiplier

to find an example of this.

Because of these limitations in testing, simulation, and synthesis, much effort is being

expended in the formal specification and verification of hardware. Formal methods offer

hope of overcoming some of these shortcomings because they are based on logic and can

thus take advantage of the decades of mathematical research on using logical analysis.

1. Logical circuit descriptions are often more concise than conventional HDL descrip-

tions.

2. Numerous formalisms can be embedded in logic. This allows the circuit specifier to

use the most appropriate formalism for the job [10].

, One can prove properties about logic descriptions directly using a proof system su__ch
r ........ - _

as predicate calculus. This can be very effective for establishing that a specification

meets its requirements [17].

4. Analysis can be applied t° the specificati-on and le_ssygb__stract str_uctur_ cir_cu_i_t de-

scriptions to show functional correctness [2,9,16 ].

5. Logic prov!des behavioral _ structurM: r dat a, and temporal abstraction mechanisms

for reducing the complexity of the description [12].
. =

For these and other reasons, we believe that formal methods can play an important part

in increasing the reliability of computer systems.

Note that we are not suggesting that formal methods replace testing, simulation, and

synthesis, but rather that they complement these techniques. Figure 1 shows an idealized

ASIC design process (adapted from [11]). The RTL circuit description _s w_ri_tten in an



3rd NASA Symposium on VLSI Design 1991 7.3.3

Vt.P(t) AQ(t)

_- Circuit

Specification

switch...
case...

if...

Ii00001...

0011001...

1011001...

I

! ! ! I J_
I

I I I 1 L._I

I I I ]

dWUUUU

Verification }

_ Circuit
Descnphon

FSMOptimization

Logic

Synthesis

Mapping

Place and

Route

Mask

Generation

I

Manufacturing

Simulation

Boolean

Equivalence

Timing

Verification

Simulation ]

Manufacturing

Testing

Figure 1: The ASIC Design Process.



7.3.4

appropriate HDL and subjected to synthesis and simulation. The specification is a more

abstract declarative description which is subject to formal analysis.

Having described the benefits of formal methods, there are a number of directions

that we could take. We could, for example, focus on how formal methods interacts with

conventional CAD tools or-discuss the pros and cons of the design process in Figure 1.

Instead, we will show how logic can be used to specify circuits and how proof functions as

a mathematical analysis tool for reasoning about those specifications. We do not attempt

to give a complete survey of the field, but rather focus on a demonstration of techniques.

2 Using Logic to Specify Hardware.

A circuit is a collection of devices composed by interconnection. Each of these devices

has ports which are used for input, output, or both. The behavior of a device can be

expressed in terms of its ports. Each of the devices in a circuit can, in turn, be viewed as a

composition of stiU other devices. This hierarchy of devices eventually leads to the devices

that the designer considers primitive. The smallest devices we will deal with in this paper

are logic gates and indeed, in many cases, we will stop much higher than even gates.

Clocksin describes several ways t0 specify circuit structure [3]:

• We can use imperative declarations of the circuit structure (this is referred to as the

extensional method).

• We can use functions to describe the output in terms of the input.

• We can use predlCates in a quantified logic to relate the ports of a device using
behavioral or structural constraints.

Each of these methods has advantages and disadvantages. The extensional method has

the advantage of being familiar to designers since it resembles imperative languages such

as Pascal that most designers have used. Most modern hardware descriptions languages

(e.g. VHDL) use the extensional method. The largest disadvantage of the extensional

method is that it is difficult to treat formally, just as imperative programming languages

are hard to treat formally:

The functional model is widely used; Hunt's specification of the FM8501 microproces-

sor, for example, is functional [6]. To specify the behavior of sequential circuits function-

ally, the specification language must support recursion. Hunt uses recursion to describe

the sequential operation of his CPU.

In the functional model, circuit interconnection is given by the syntactic structure of

function application. This can cause several problems:

• Describing circuits with bi-directional ports is difficult since functional specifications

differentiate between input and output syntactically.

• The purpose of a structural specification is to show how components are connected

together. Since the only means of expressing connection is function application, even

returning a tuple is insufficient for describing circuits with more than one output.



3rd NASA Symposium on VLSI Design 1991 7.3.5

output

Figure 2: Implementation of a simple circuit, D

* Sequential circuits feedback on themselves. Recursion is the best alternative; but

that can be inadequate for circuits with multiple feedback paths.

The predicate method is a widely used specification technique [5] and is the one we will

demonstrate in this paper. A disadvantage of the predicate method is that designers are

likely to find it the most unfamiliar of the three and thus difficult to use. in addition, to use

the predicate method, the logic must support existential quantification, either explicitly

or implicitly. (Prolog is an example of a language with implicit existential quantification.)

The predicate method does, however lend itself to a wide variety of circuit types, including

those with multiple outputs and bi-directional ports.

2.1 Specifying Circuits with Predicates.

As an example of the predicate model, we will specify the behavior and structure of a very

simple circuit we call D. The predicate that specifies the behavior of the circuit can be

given by the following logic definition:

[k-de! out A V (c A d)D(a,b,e,d,out) (a b)

Notice that the inputs and outputs are all included in the arguments and the behavior is

expressed as a constraint among the outputs and the inputs.

One possible implementation for D is shown in Figure 2. As was mentioned earlier,

each device can be thought of as representing a constraint on its inputs and outputs. For

example, the top And gate constrains a, b, and p in a manner consistent with the behavior
of the device.

[ _-del And(a, b, p) = (p = a A b)

To get the constraint represented by the entire device, we can compose the individual

constraints using conjunction.

lAnd(a, b, p) A And(c, d, q) A Dr(p, q, out): J]

This expression constrains the values not only on the ports of the device, a, b, c, d, and

out, but also on the internal lines p and q. We normally wish to regard such a device as

a "blackbox" and consequently are only interested in the values of the external lines. We

can hide the internal lines using existentially quantified variables and define a predicate

D_imp that represents the structure of the circuit.



7.3.6

Fd_l D_imp(a, b, c, d, out) =3 p q. And(a, b, p) A And(c, d, q) A Or(p, q, out)

While this formula looks confusing at first, we should note that this level of specification

can be produced automatically from netlists or traditional HDL models.

For comparison, the following specification describes the same circuit using functions:

V(a,b,c,d)-- Or(And( ,b),And(c.d)) I

The outputs are not mentioned explicitly; the result of the function is taken to be the

output of the circuit.

Similarly, we can write a extensional specification of the circuit in a hardware descrip-

tion language such as VHDL [1]:

Entity D.imp is

port(a, b, c, d :in Bit;

end D_imp;

outp :out Bit);

architecture Structuro of D_imp is

component ANDGate por%(il,i2:in Bit; outp :out Bit);

component ORGate por_(il,i2:in Bit; outp :out Bit);

signal p, q: Bit

GI: ANDGate port map (a, b, p);

G2: ANDGato port map (c, d, q);

G3: ORGate port map (p, q, outp);

end Structure;

The difference between this specification and the predicate model of the circuit structure is

largely superficial. The primary difference is the abundance of keywords in the extensional

specification. The biggest impediment to using specification languages such as VHDL is

that they sometimes lack a clear semantics. This problem canbe overcome by defining a

semantics of the specification language in the object language of a verification tool such

as ttOL. Van Tassel has done just that using VHDL and HOL in [14,15].

2.2 Specifying Sequential Behavior.

The last section specified a simple combinatorial circuit. We specify the behavior of se-

quential circuits in higher--order logic using an explicit representation of time.

For example, we can specify the behavior of a simple latch as follows:

IF&! latch in out set : V t. out (t+l) = set t -_ in t I out t ]

In the specification, in, out, and set are functions of time. The value of a signal at time

t is returned when the function representing the signal is applied to t. The specification

says that the value of out at time t + 1 gcts the value of the input port, in, at time t if



3rd NASA Symposium on VLSI Design 1991 7.3.7

the set line is high and remains unchanged otherwise. Universal quantification over time

is used in defining the predicate.

We can also use existential quantification to describe temporal operators. For example,

suppose that we wish to define a predicate that says that a signal will eventually go high.

The following is a definition of an EVENTUALLY operator:

kd4 EVEITUALLY d tl = 3 t2. _2 > tl A d t2

When applied to the signal d, and the current time, tl, the predicate states that there exists

a time, t2, in the future when the signal d wiU be true. The use of existential quantification

over time is also used to specify the behavior of asynchronous interconneetions between

devices. 3oyce [9] has shown how temporal logic can be embedded in hlgher-order logic.

2.3 Behavioral Abstraction and Specification.

There are many ways of specifying the same circuit. For example, in specifying a two input

binary decoder, one might write:

_dff decoder_spec sO sl oO ol 02 03 =

(o0 = (sl -* (sO --* F I F) I (sO --+ F I T))) A

(ol = (sl --_ (sO --_ F I F) I (sO-_ T I F))) A

(02 = (sl --_ (sO --_ F I T) I (sO --* F I F))) A

(03 = (sl --_ (sO --* T I F) I (sO --, F I F)))

While this specification is correct, its meaning is not very clear.

Here is another specification for the same behavior:

5d4 decoder_spec sO sl o0 ol 02 03 =

(o0 = _sl A _s0) A

(oi = _sl A sO) A

(02 = sl A _s0) A

(03 = sl A sO)

This specification closely models one possible implementation for the circuit; consequently,

using it as the behavioral specification would make the verification easier, but would not

tell us much about the abstract behavior of the decoder.

The next specification is more abstract and says more about the behavior of the decoder:

_de/ decoder_spec sO sl oO ol 02 03 =
(o0 *-* ((sl,s0) = (F,F))) A

(ol _-* ((sl,s0) = (F,T))) A

(02 _ ((sl,s0) = (T,F))) A

(03 *-*((sl,s0) = (T,T)))

This specification clearly shows the binary numbers being represented by the inputs. More-

over, the specification does not suggest any particular implementation. In general, the more

abstract a specification, the easier it is to understand, but more difficult it is to verify.

We can make the above specification even more abstract by defining a function, pairval,

that converts boolean pairs into numbers and then writing the specification as follows.



7.3.8

decoder_spe¢ sO sl oO ol 02 03 =

let n = pairval(sl,sO) in

(o0 _ (n = 0)) A
(ol _ (n-- 1)) A
(02 _-_ (n : 2)) A

(03 _-_ (n = 3))

This specification can be readily generalized to have n inputs and 2 '_ outputs.

2.4 Specifying a Microprocessor

So far, the circuits we have described have been simple, for expository purposes. One

should not assume that all specifications must be of small devices. Indeed, logic is most

useful when used on large, abstract specifications. To demonstrate the use of formal

specification on a larger example, we will present the SpecifiCation of a small microprocessor

called Tamarack.

There have been numerous efforts to verify microprocessors [4,8,6]. Most of these have

used the same implicit behavioral model. In general, the model uses a state transition

system to describe the microprocessor. A microprocessor specification has four important

parts:

1. A representation of the state, S. This representation varies depending on the verifi-

cation system being used.

2. A set cf state transition functions, J, denoting the behavior of the individual instruc-

tions of the microprocessor. Each of these functions takes the state defined in step

(1) as an argument and returns the state updated in some meaningful way.

3. A selection function, N, that selects a function from the set J according to the

current state.

4. A predicate, I, relating the state at time t + 1 to the state at time t by means of J

and N.

In some cases, the individual state transition functions, J, and the selection function, N,

are combined to form one large state transition function.

To make all of this mode concrete consider the top-level specification of Tamarack

presented by :loyce in [9].

_del TamarackBeh (ireq, mem, pc, ace, rtn, lack) =

V_:time.

(mere (t+l),pe (t+l),acc (t+l),rtn (t+l),iack (t+l)) :

NextState (ireq t,mem t,pc t,aee t,rtn t,iack t)

The top-level specification relates the state of the assembly language level registers at time

t + 1 to their state at time t using tile function NoxtState. The level of abstraction in the



3rd NASA Symposium on VLSI Design 1991 7.3.9

top-level specification is roughly that found in an assembly language reference manual.

The difference is that tile formal specification is less ambiguous and more complete.

The next state function chooses among the many individual instructions according to

a selection criteria which describes_ in an abstract way, instruction decoding:

_de] NextState (ireq, mem, pc, ace, rtn,

let opcval = OpcVal (mem,pc) in

((ireq A _iack) -_ IRQ SEM

(opcval = JZK_0PC) --*

(opcval : JMP_OPC) -4

(opera1 : ADD_OPC) -_

(opcval = SUB_OPC) --,

(opcval = LDA_OPC) --*

(opcval = STA_OPC) -_

(opera1 = RFI_OPC) -_

iack) :

(mem,pc,acc,rtn,iack)

JZR_SEM (mem,pc,acc,rtn,iack)

JMP_SEM (mem,pc,acc,rtn,iack)

ADD_SEM (mem,pc,acc.rtn,iack)

SUB_SEM (mem,pc,acc,rtn,iack)

LDA_SEM (mem,pc,acc,rtn,iack)

STA_SEM (mem,pc,acc,rtn,iack)

RFI_SEM (mem,pc,acc,rtn,iack)

NOP_SEM (mem,pc,acc,rtn,iack))

Each of the instructions available to the programmer as well as actions that take place

on instruction boundaries such as interrupts are defined using a function on the state and

environment variables that returns a new state updated as appropriate for the instruction

being specified. We use the ADD instruction as an example:

_del ADD_SEM (mem:*memory,pc:*wordn,acc:*wordn,rtn:*wordn,iack:bool) =

let inst = fetch (mem,(address pc)) in

let operand = fetch (mem,(address inst)) in

(mem, inc pc, add(acc,operand), rtn, lack)

This instruction increments the program counter and stores the result of adding the accu-

mulator to the contents of memory pointed to by the current instruction in the accumulator.

No other state changes occur.

There are at least three kinds of abstraction taking place between the register transfer

level (RTL) description of Tamarack and the top-level specification given above.

1. Behavioral Abstraction -- The RTL description of Tamarack is a structural model

that says how the major blocks are connected. The top-level specification says

nothing about the structure of the microprocessors, but rather describes the required

behavior.

2. Data Abstraction -- The RTL description contains registers that are not of interest

in the top-level specification. A good example of these types of registers is the

instruction register which is vital to the correct functioning of the microprocessor,

but is not considered in the top-level specification.

3. Temporal Abstraction -- Events at the RTL level happen at a much finer time

granularity than events at the top-level. Events at the top-level are measured on a

time-scale that coincides with the execution of macro-level instructions. Events at

the RTL level are measured by the sub-cycle clock. Many RTL level events must

take place to cause one top-level event to happen.



7.3.10

3 Using Proof to Analyze Specifications

Proof can be used in at least two ways to analyze specifications. The first methods asks

the question Is my specification correct _. The second methods asks the question Does my

implementation meets the specification f

3.1 Design Verification

Determining whether or not a specification is correct is hot a question that can be subjected

to exhaustive mathematical analysis since the design is an intellectual artifact, not a math-

ematical one. We can, however, determine whether a specification meets its requirements

to the extent that those requirements can be formulated in logic.

An example of this is the verification of two important properties of the supervisory

mode of a microprocessor called AVM-1 [17]. AVM-1 has a supervisory mode that is

controlled by the supervisory mode bit in a register called the program status word (PSW).

When theprocessor'_s in supervisory mode, Certain registers i,_ the register file (which does

not include the PSW) become writab!e. Otherwise they can only be read.

One of the design requirements can be stated informally as follows:

Property 1 (Integrity of Privileged Registers) I/the CPU is not in supervisory mode

and the nezt instruction is not an ezternal or user-generated interrupt, then every privi-

leged register remains unchanged.

The integrity of the privileged registers is only important at the assembly language

programmer's level of the CPU. We do not care if the registers change on a finer time scale

so long as they remain the same when viewed by the outside world.

The forma_zation of this requirement is not difficult. The following expression captures

the essence of the problem:

V n . (IS_SUP KEG n)

(EL n (macro_reg (t+l)) =

(EL n (macro reg _)))))

The expression states that the register file (represented by a list) is the same for every

supervisory mode register at time t + 1 as it was at time t. 1

The basic requirement, stated above, must follow from the definition of the top-level

of AVM-I (AVM_.Beh) and is subject to the following conditions:

1. The CPU is not currently in supervisory mode (expressed as -_get_sm (psw t)).

2. The next instruction is not an internal or external interrupt (expressed in the speci-

fication as -_(Opcode ...= INT_OPCODE) and -_(Opcode ...= EINT_OPCODE).

IEL selects the n th member of a list.



3rd NASA Symposium on VLS[ Design 1991 7.3.11

AVM_Beh

(A t. (reg_list _,psw t,pc t,mem t,ivec t))

(A t. (ireq_e t))

(V t.

_get_s= (psw t) A

_(Opcode (reg_list t,psv t,pc t,mem t,ivec t)

(ireq_e t) = INT_OPCODE) A

_(Opcode (reg_list t,ps. t,pc t,mem t,ivec t)

(ireq_e t) = EINT_OPCODE )

(Vn. IS_SUP_REG n

(EL n(reg_list(t + I)) _ EL n(reg_list t))))

This theorem is not difficult to establish and, when combined with a correctness proof (see

Section 3.2), gives confidence that the supervisory mode works as it should.

3.2 Functional Verification

A second, and complimentary, use of proof is in showing that our specification is correctly

implemented by the structure that we have chosen for the RTL model.

A simple example is given by the circuit D specified in Section 2.1. To show that the

implementation (represented by D_imp) meets its specification (represented by D), we prove

the following theorem:

b V a b c d out . D_imp(a,b,c,d,out) ==¢. D(a,b,c,d,out)

This theorem could be proven using any number of techniques. Indeed, while it is a simple

example, it has little to do with the kinds of proofs of correctness that occur most frequently

or that are the most interesting.

A more interesting example is given in the proof of correctness of Tamarack [9] since

the proof involves behavioral, data, and temporal abstraction. We have already seen the

specification of the top-level of Tamarack (see Section 2.4). The RTL model is a fairly

large, but conventional description of the large grain structure of the microprocessor.

In order to understand the correctness theorem, we must describe the temporal abstrac-

tion that takes place between the RTL model and the top-level behavioral description. As

we have already mentioned, different levels in the specification have different views of time.

We use temporal abstraction to produce a function that maps time at one level to time at

another. Figure 3 shows a temporal abstraction function _'. The circles represent clock

ticks. Note that the number of clock ticks required at the bottom-level to produce one

clock tick at the top-level is irregular.

The predicate, _, is true whenever there is a valid abstraction from the lower level

to the upper level. We can define a generic temporal abstraction function in terms of _.

In a microprocessor specification, G is usually a predicate indicating when the lower level

machine is at the beginning of its cycle---a condition that is easy to test.



7.3.12

t, t2 t3 t4 t5

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

_: T F F F T F T T F T

Figure 3: The function _-, which maps time at one level to another, can

be defined in terms of a predicate, _, which is true only when

the mapping occurs.

We will use a function Time0f as our temporal abstraction function. The function is

defined recursively so that (Time0f g 0) is the first time that the predicate g is true and

(Time0f g (n+l)) is the next time after time n when g is true. We will not develop the

details of the temporal abstraction function here, but refer the interested reader to [9].

The final correctness theorem for Tamarack states that the behavioral model (defined

by TamarackBeh) follows from a system (AsynSystem) composed of the RTL model and

an asynchronous memory subsystem.

F IBynSystem (idreq.mpc.mar,pc,acc,ir,rtn.arg.buf.idack,dack.mem) A

((val4 o mpc) 0 = O)

let f = TimeOf ((((val4 rep) o mpc) Eq O) and (not dack)) in

TamarackBeh (idreq o f,mem o f,pc o f.acc o f,rtn o f,idack o f)

The function f is the _nction .T" of Figure 3. We also have a reset condition that requires

that the value of the microprogram counter, mpc, be 0 at time 0.

Presenting the proof of the correctness theorem for Tamarack is beyond the scope of this

paper. The proof is actually quite straightforward in most cases, involving standard proof

techniques such as substitution, case analysis, and induction. Indeed, much of the difficulty

is caused by the size of the proof effort rather than the puzzling nature of the theorems.

Tamarack is, of course, far from being the largest device with a verified correctness. Recent

research has developed techniques for managing much of the complexity of proofs of this

sort [16]. The techniques are demonstrated in the proof of correctness of AVM-1 .

One should not, of course, accept that the microprocessor is correct simply because

there is a theorem. The idea is that proof constitutes engineering analysis and like an

engineering analysis, must be documented and subject to review. What we have presented

here is not, of course, an engineering analysis.



3rd NASA Symposium on VLSI Design 1991 7.3.13

4 Conclusions

This paper has shown how logic can be used to specify and analyze hardware designs. The

use of formal methods has a number of advantages.

• Specifications give a clear and precise statement of the intended behavior of a design.

• Specifications can be analyzed to determine whether or not they meet the require-

ments of the design.

• Functional correctness can be demonstrated through analysis rather than testing.

• Assumptions are made explicit.

We do not suggest that formal methods replace conventional engineering practices,

but augment them. Work is continuing to bring tools based on formal methods into the

designers toolbox:

• We are developing new high-level models of common hardware devices which guide

the specification and verification of those devices.

• We are writing translators between hardware description languages used by conven-

tional CAD tools and verification tools.

• We are doing case studies to serve as examples of specification and verification.

These efforts, and similar efforts at other institutions promise to make formal methods

tractable for large-scale use in VLSI design.

References

[1] J. R. Armstrong. Chip-Level Modeling with VHDL. Prentice Hall, 1989.

[2] A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher order

logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct Circuit

Designs. Elsevier Scientific Publishers, 1987.

[3] W. F. Clocksin. Logic programming and digital circuit analysis. The Journal of Logic

Programming, 4:59-82, 1987.

[4] A. Cohn. Correctness properties of the VIPER block model: The second level. Tech-

nical Report 134, University of Cambridge Computer Laboratory, May 1988.

[5] M. J. Gordon. Why higher-order logic is a good formalism for specifying and verifying
hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal Aspects of VLSI

Design, pages 153-177. Elsevier Scientific Publishers, 1986.



7.3.14

[8]

[7]

[s]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

W. A. Hunt. The mechanical verification of a microprocessor design. In D. Borrione,

editor, From HDL Descriptions to Guaranteed Correct Circuit Designs. Elsevier Sci-

entific Publishers, 1987.

IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Manual, 1987.

J. J. joyce. =Formal verification =and implementation of a microprocessor. In

G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification, Verification, and

Synthesis. Kluwer Academic Press, 1988.

J. J. Joyce. Multi-Level Verification of Microprocessor-Based Systems. PhD thesis,
Cambridge University, December 1989.

J. J. Joyce. More reasons why higher-order logic is a good formalism for specifying

and verifying hardware. In Proceedings of the A CM/SIGDA International Workshop

in Formal Methods in VLSI Design, January 1991.

K. Keutzer. Panel discussion: Model checking, theorem proving, and CAD. In

A CM/SIGDA International Workshop in Formal Methods in VLSI Design, January
1991.

T. Melham. Abstraction mechanisms for hardware verification. In G. Birtwhistle and

P. A. Subrahmanyam, editors, VLSI Specification, Verification and Synthesis. Kluwer

Academic Publishers, 1988.

C. Pygott. Noden_HDL: an engineering approach to hardware verification. In

G. Milne, editor, The fusion of Hardware Design and Verification. Elsevier Science

Publ. B.V.IFIP, 1988.

J. P. V. Tassel. The semantics of VHDL with VAL and HOL: Towards practical

verification tools. Master's thesis, Department of Computer Science and Engineering,
Wright State University, 1989.

J. P. V. Tassel and D. Hemmendinger. Toward formal verification of VHDL speci-

fications. In L. Claesen, editor, Applied Formal Methods for Correct VLSI Design,

Leuven, Belgium, November 1989. Elsevier Science Publishers.

P. J. Windley. The Formal Verification of Generic Interpreters. PhD thesis, Univer-

sity of California, Davis, Division of Computer Science, June 1990.

P. J. Windley. Using correctness results to verify behavioral properties of micropro-

cessors. In Proceedings of the IEEE Computer Assurance Conference, June 1991.



3rd NASA Symposium on VLSI Design 1991

Y94-183,$4
8.1.1

A New Variable Testability Measure

M. Jamoussi, B. Kaminska, D. Mukhedkar

Department of Electrical and Computer Engineering

Ecole Polytechnique de Montreal

P.O.Box 6079, Station A

Montreal, Canada (H3C 3A7)

Abstract- In this paper, we propose a new Variable Testability Measure (VTM)

for implementing testability at the high-level synthesis stage of the design

process of integrated circuits. This new approach, based on binary decision

diagrams, representing fully functional blocks of a circuit, and on their cyelo-

matic testability measures. It manipulates dataflow blocks to predict whether

the circuit is testable and the vector set required to test it.

1 Introduction

In recent years, the use of silicon compilation and other standard cell design tools has

changed the way digital systems are designed. As a result, more and more systems are being

designed at the functional level, with little gate-level design being explicitly performed.

So, an appropriate measure can be developed which emciently represents knowledge about

functional-level testability.

This paper addresses an approach for implementing testability in the high-level synthe-

sis process, and particularly at the functional-level stage. Then, a new Variable Testability

Measure (VTM) is defined and used to evaluate the dataflow testability in an advanced

step of the design process.

2 Variable Testability Measure

We are interested in the testability of integrated circuits as early as possible in their design

process.

Usually, testability implementation is left until after the design is completed, which

requires greater effort at later stages. Testability analysis tools, such as SCOAP [7], which

are supposed to support testability incorporation during the design stages, actually provide

poor predictions of testability and do not suggest how and what test methodologies should

be applied.

2.1 High-Level Synthesis

Synthesis involves finding a structure that implements the behavior, the constraints and

the goals of a given system. Generally, synthesis may be considered at various levels

of abstraction because designs can be described at various levels of details. High-level

synthesis [9] is the type of synthesis that begins at what is often called the algorithmic level.



8.1.2

It takes an abstract behavioral specification of a digital system and finds a register/transfer-

level structure to realize the given behavior.

The system to be designed is -usury represented at the algorithmic level by a program-

ming language such as PASCAL [10] or ADA [6], or by a hardware description language

similar to a programming one, such as VHDL [8]. The first step in high-level synthesis

is usually the compilation of the formal language describing the system behavior into an

internal representation.

The next two steps in synthesis transform core behavior into structure: scheduling

and allocation. They are c!osely interrelated and interdependent. Scheduling consists

in assigning the operations to so called control steps, fundamental sequencing units in

synchronous systems and correspor_ds to a clock cycle. Allocation consists in assigning

the operations to hardware. Finally, the design has to be converted into real hardware.

Lower-level tools such as logic synthesis and layout synthesis complete the design.

The advantages of implementing testability as early as possible in the design process are

a testable design, a reduced test cost and an earlier detection of intestable blocks. To incor-

porate testability in high-level synthesis as a constraint of the design specifications, a new

concept of Variable Testability Measure is introduced providing information if the circuit

is testable and permits a good prediction of the test-vectors set for a graph-representati0n
of a circuit.

2.2 Variable Testability Measure

A new method for gathering the testability information at the dataflow-design stage called

the Variable Testability Measure (VTM) is_ntroduced, it permits an easy propagation of

the information about functional-block testability and indicates that testability problems

are very easily dealt with high-level synthesis.

Using a hierarchical abstraction principle, VTM will be able to provide two kinds of

informations: first, whether or not each subcireuit and Lhen the whole circuit are testable;

second, the minimum number of test vectors required for a specific block of the circuit,

a_ud then for the whole circuit. This approach is based on the binary decision diagram [1]

and the cyclomatic testability measure [2].

The Binary Decision Diagram (BDD) is a method for defining, analyzing, testing, and

implementing large digital functions. It provides a complete implementation-free descrip-

tion of the functions involved. One of the areas in which these diagrams can be particularly

useful is that of test generation, i.e. finding a set0f inputs able to-confirm that a given im-

plementation performs correctly. Finally, BDDs may be directly interconnected to define

still larger functions.

The Cyclomatic Testability Measure (CTM) is a method for predicting and determining

a minimum set of test vectors for graphs of combinational and sequential circuits in the

early conceptual stage of the design process. This approach is based on the cyclomatic

number [3], and the BDD. If we note V the CTM of a given BDD called G, V is computed

by the following equation:

Z

L

z



3rd NASA Symposium on VLSI Design 1991 8.1.3

(1)

where e and n are the numbers of edges and nodes in the graph G respectively.

Finally, it was shown that the CTM, called V, of a circuit composed of p subeircuits

and represented by a BDD called G, is computed by the following equation:

P

v(c)= V(G,)+ Z(V(G,)- 2) (2)
4=2

where V(G1) is the CTM of the subcircuit containing the entry node represented by the

BDD, called Ga. V(Gi) corresponds to the i th subcircuit represented by its BDD, called

2.3 Definition of VTM

The concept of VTM is a further development of the Cyclomatic Testability Measure.

The VTM is defined as follows: Consider a functional block having its input and output

variables given on n bits, such as an adder or a multiplier. VTM is a coemcient assigned

to each bit of the input and output variables of this functional block. The VTM of a bit

means the minimum number of test vectors required to test it. In this effect a variable

given on n bits has n different VTMs, one for each bit.

The VTM permits treatment of functional blocks having their inputs and outputs given

on various numbers of bits, while the CTM treats blocks with single outputs and inputs

given on one bit each of them.
The advantage of the VTM is the easy composition of various blocks, which permit

testability incorporation in the dataflow of the synthesis process.

3 Use of VTM in High-Level Synthesis

Throughout this paragraph, we try to use this new measure for some common functional

primitives. Next, we will see how this new measure is involved in the evaluation of the

testability of a circuit in its high-level synthesis stage.

3.1 Computation of VTM for some functional blocks

We try to determine the VTMs of the outputs of some functional-level circuit primitives

such as comparators, adders, multipliers, logical operators , multiplexors which basically

form the data flow of a circuit. Three cases are discussed in this section.

For the cases of functional primitives studied, we note A and B the inputs of these

blocks, each one is given on n bits: A,,A,_-I..A_..A2A1 and BnB,-1..Bi..B_B1 respectively.

This notation means that A,,An_I,..,AI,..,A_,A, and B,,B,__I,..,BI_..,Bz,B, are the binary

encoding of A and B respectively. We also note al,a2,..,ai,..,a, and bl,b2,.,bi,._b, the VTMs

of A and B respectively.



8.1,4

3.2 A Comparator

Let us consider the case of a comparator of two variables A and B, given on n bits. The

logical value of the output S is 1' while A is greater than B (A > B). If not, the value of
Sis O.

In tigurel, wepresent the BD_D_de_cribing this functional block. According to equations
(1) and (2), the VTM of S, noteed s, is:

n

8 := (4 , n + 3) -- (an +ba)+2,_-_(a,+bi+4) (3)
i=l

So the comparator of two variables, given on n bits each one, is tested with a minimu_m

number of test vectors found by equation (3).

Figure !: BDD of a Comparator

3.3 A Multiplexor

LeG Us study now the case of a multiplexor of two variables. The inputs A, B are given on

n bits while the control signal C on one bit. The output S, which is S,,S,_-I..Si..S2Sx, is
equal to A if C is true, or else it is equal to B.

The multiplexor Can bc considered in this case as a set of elementary multiplexors,

where the i _h bit of the output is given as follows, (i = i, ...,n):

S_ = C.A_ + O.B_ (4)

The CTM of the BDD describing Si is equal to 4. Then, supposing ai,bi,c,si the VTMs

of Ai,Bi,C,S i respectively, according to equations (1) and (2), s_ is computed as follows,
(i = l,...,n):

E



3rd NASA Symposium on VLSI Design 1991 8.1.5

si = a/+ bi + c + 2 (5)

Finally, if A and B are primary inputs, which means ai = bi = 2, (i -- 1, ..., n), according

to (5), si is given as follows:

si : c + 2 (6)

3.4 An (n,n) Adder

Let us consider now, an adder of two variables A an B given on n bits, called an (n,n) adder.

The sum S is given on (n + 1) bits and is S,+1S,,..S_..$2S1. Considering the elementary

full-adder, we have:

S; = Ai O B/O R/_ 1

Ri = M(Ai, Bi, R;-1)

(7)
(s)

where Si is the i th bit of the sum and R_ the carry out of this addition. The CTMs of

the BDDs describing 5`i and Ri are 7 and 5 respectively. Then, if sl, ri-1 and rl are the

VTMs of 5`i, Ri-1 and Ri respectively, according to equation (2) s/ and rl are computed

as follows, (i = 2,...,n - 1,n):

3i = 7 + (ai- 2) + (b, - 2) + (ri-1 - 2)

ri = 5 + (al - 2) + (hi - 2) + (ri-1 - 2)

In the case of the half-adder, we have:

(9)
(10)

s, -- A, G B, (11)
R, = M(Aa,B,,O) (12)

Then, supposing sa and rl the VTMs of 5'1 and R1 respectively, sl and rl are computed

as follows:

s, =4+(al-2)+(bl-2)

rl =3+(al-2)-4-(bl-2)

(13)

(14)

Noting a v and bp the VTMs of A v and B v respectively (p = 1, ...,i), the VTM si of 5"i,

the i th bit of S, is:

i

s/= _(ap + bp)+ (2 - i) (15)
p=l



8.1.6

II OPERATOR

Addition

Subtraction

Comparator

Multiplexor

Multiplication

K (2 bits)
12

12

K (3 bits)

23

23

7

8

11

12

9 24

AND / OR 3 3

Table 1: Operator-Cost Coe_ciehts

3.5 Objective function

it is common practice to use the cost function in the high-level syuthesis, considering delay,

area for testability constraints [5]. In this work, we propose a new objective function able

to estimate and evaluate particularly the testabl_l]ty and the area constraints or a circuit.

in a first stage, we propose to define a coefficient K for each functional primitive as the _iim

or its output VTMs, while it only has primary inputs, the value Of K depends essentially

on the bit number of the given functi0nkl-primitive variables.

In the case of logical operators or specific blocks where variables are given on one bit

such as AND, OR gates, K is the output VTM. Table 1 gives the costs of some common

functional blocks operating with variables given on 2 bits and 3 bits respectively. This

coefficient will be, for a given functional primitive, its cost coefficient in the objective
function introduced bellow:

3.6 Definition

Let us consider a circult C composed of n-connected functional primitives. Given the i th

functional block (i = 1, ...n), let us assume:

mi: the sum of the bit numbers of its outputs.

at,v, (p = 1, ...,mi): the VTMs of this block outputs.

Ki: the cost of this block.

The objective i_unc_ion is defined as i'oiiows:

n rn_

f _ Ki * (_-] at,v) (16)
i:I p=l

The function given by equation (16) shows a trade-off between the circuit area (func-

tional primitives used), and the number of test vectors or, in other words, the test time.

One of our goals then, by using this new measure in high-level synthesis, can be expressed

as a question of minimizing this objective function.

=--



3rd NASA Symposium on VLSI Design 19fll 8.1.7

Ol

f

ol

112 YI Yl

Figure 2: (a) Example circuit (b) Example circuit modified

The example presented in figure 2(a) is modified in 2(b) without changing the main

task of the circuit. We notice lower VTM values against a greater silicon area due to a

second multiplier used in figure 2(a). This transformation shows the trade-off discussed

above.

4 Conclusion

In this paper we have proposed a new Variable Testability Measure (VTM) with the aim

of incorporating testability at the functional-level stage, considered as an advanced step in

the design process of a circuit. Our approach is essentially based on the Binary Decision

Diagram (BDD) and the Cyclomatic Testability Measure (CTM). We have proposed an

objective function to estimate circuit-testability cost.

References

[1] S. B. Akers, Binary Decision Diagram, IEEE Transactions on Computers, Vol. C-27,

pp. 509-516, No.6, June 1978.

[2] B. Ayari & B. Kaminska, A Cyclomatic Testability Measure, Proceedings of the Cana-

dian Conference on VLSI, Ottawa, pp. 8.2.1-8.2.10, 1990.

[3] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.

[4] M. A. Breuer & T. H. Chen, Automatic Design for Testability Via Testability Mea-

sures, IEEE Transactions on Computer-Aided Design, Vol. CAD.4, pp. 3-11, January

1985.



8.1,8

[5] M, I. Elmasry & C. H. Gebotys, VLSI Design with Testability, Design Automation
Conference, pp. 16-21, 1988.

[6] E. F. Girczyc, Automatic Generation Of Microsequenced Data Paths to Realize ADA

Circuit Description, PhD Thesis, Carleton University, July 19841

[7] L. Coldst_ & E. L. Thigpen, SCOAP: Sandia ControUability / Observability A_M-

ysispr°gram, IEE.E Design Automation Conference, 1980.

[8] A. Lowensiein & G_Winter, VHDL's impact on Test, IEEE Design _ Test Comput-
erJ, V3 n2, pp. 48-53, April 1986.

[9] A. C. Parker, Tutorial on High-Level Synthesis, IEEE Design Automation Conference,
pp. 330-336, 1988. --

[10] Trickey g_ H, Flamel, A High-Level Hardware Compiler, IEEE

Computer-Aided Design, Vol. CAD-6,2 pp. 259-269, M_rch 1987.
TranJaction_ on



3rd NASA Symposium on VLSI Design 1991

N94-

Controlling State Explosion During

Automatic Verification of Delay-Insensitive and

Delay-Constrained VLSI Systems

Using the POM Verifier 1

D. Probst and L. Jensen

Department of Computer Science

Concordia University

1455 de Maisonneuve Blvd. West

Montreal, Quebec Canada H3G 1M8

Abstract- Delay-insensitive VLSI systems have a certain appeal on the ground

due to difficulties with clocks; they are even more attractive in space. We an-

swer the question, is it possible to control state explosion arising from various

sources during automatic verification (model checking) of delay-insensltive sys-

tems? State explosion due to concurrency is handled by introducing a partial-

order representation for systems, and defining system correctness as a simple

relation between two partial orders on the same set of system events (a graph

problem). State explosion due to nondeterminism (chiefly arbitration) is han-

dled when the system to be verified has a clean, finite recurrence structure.

Backwards branching is a further optimization. The heart of this approach is

the ability, during model checking, to discover a compact finite presentation

of the verified system without prior composition of system components. The

fully-implemented POM verification system has polynomial space and time

performance on traditional asynchronous-clrcuit benchmarks that are expo-

nential in space and time for other verification systems. We also sketch the

generalization of this approach to handle delay-constralned VLSI systems.

Keywords: delay-insensitive system, model checking, state explosion, partial-order rep-

resentation, recurrence structure, state encoding, delay-constrained reactive system.

1 Introduction

Delay-insensitive systems are motivated by difficulties with clock distribution and compo-

nent composition in clocked systems [1,2,5,9]. In a delay-insensitive system, modules may

be interconnected to form systems in such a way that system correctness does not depend

on delays in either modules or interconnect;on media. Gate-level implementations of mod-

ules whose specifications are delay-insensitive are often themselves quasi-delay-insensitive;

essentially, the assumption of isochronic forks allows one gate to handshake on behalf of

1This research was supported by the Natural Sciences and Engineering Research Council of Canada under

grants A3363 and MEF0040121. Email: probst@crim.ca.



8".2.2

another. Most interesting are delay-constrained reactive systems, in which either outputs

or inputs or both must appear in some temporal window relative to enabling inputs or

outputs. FfarcIw_ systems in space make delay insensitivity _even more attractive due

to (/) pervasive asynchronous communication, and (it) extremely-low-power applications.

Delay insensitivity has a naturaI h_nk to controlling state explosion during automatic veri-

fication; the simple enabilng relat_-ons in-delay-insensRive con-trol systems make it easy to

discover a solution to the state-expIosion problem based on causality checking. To build an

automatic verifier based on causaiity checking, you need two things: (i) an expressive fi-

nite partial-order representation strategy that explicitly distinguishes concurrency, choice

and recurrence, and (it) a "goal-directed" state-encoding strategy that is both compre-

hensive (includes a_ causality) and minimal (has fewest states) the last for performance

reasons. Given these two things, you can combine the best features of automata-based and

partial-order-based computational verification methods.

2 Behavior Automata

The basic automata used to represent processes are called behavior automata, which can

be unroIIecI to procTuce event structures (essentla_y sets of partlaJJy-ordered computations

with all branching due to conflict resolution made explicit) [5-8]. Partial orders and con-

current computation are discussed in [3]. Restrictions on behavior automata trade off

between expressiveness and processability (e.g., the efficiency of verification algorithms)

[8]. The most important rules for delay insensitivity are (cf. [10]):

Rule 1 Any two events at the same port in a partially-ordered computation are order-

separated by at least one event at some other port.

Rule 2 There is no immediate order relation between two input events 0r-two output

events. Each ordering chain is an infinite sequence of strictly alternating input and

output events.

We seek abstract, i.e., black-box, specifications [4]. For this purpose, behavior automata

are constructed in three phases. First, there is a deterministic finite-state machine (stick

figure) that expresses both conflict resolution (choice) and recurrence structure. This is k

"small" automaton relative to the full transition system. Second, there is an expansion of

dfsm transitions (sticks) into finite posers, with additional machinery (sockets) to define

possibly nonsequential concktenation of posers' Third, there is an iterative process of

labeling successor arrows in posets, which terminates with an appropriate state encoding.

We Sketcia the _drmai d-e_0n o beha ior aut0maton. Given disjoint aip habets Act

(process actions), Arr (successor-arrow labels), Corn (dfsm transitions) and $oe (sockets),

first define Pos as the set of finite labeled posers over Act U Soc. Each member of Pos is

a labeled poset (B, I', r,), where (i) r is a partial order over B C_ Act U Soc, and (ii) u: 12

--* Arr assigns a label to each eiement in the successor relation f_ (the _ransitive reduction

of r). A behavior automaton is a 3-tupie (D, 77, o), where (i) D is a dfsm over Corn, (ii)



3rd NASA Symposium on VLSI Design 1991 8.2.3

77: Corn _ Pos maps dfsm transitions to labeled posers, and (iii) o: Soc --4 powerset(Act)

maps sockets to sets of process actions. Map o defines which process actions can "plug in"

to an empty socket when a poset command is concatenated to a sequence of earlier poset

commands as defined by dfsm D.

A C-element has two input ports a and b, and an output port c. Two actions are

possible at a given port depending on whether the signal transition is rising (+) or falling

(-). There is no conflict resolution (choice), and the recurrence structure of D is a simple

loop. Transitions (sticks) concatenate sequentially in this example, shown in Fig. 1. Both

the reset action and action c_-can fill the unique socket in this poset. Digit colons identify

dfsm D vertices.

0" 1 5. :0

Figure 1: Behavior automaton for a C-element.

In the absence of conflict resolution, each enabled output action must be performed

eventually (indicated by bracketing). The use of both dashed and solid arrows is a visual

reminder that a process specification contains both an interprocess protocol (given by

the dashed arrows) and an intraprocess protocol (given by the solid arrows). Here, the

state encoding (arrow labeling) is essentially fixed; since the state is encoded as the set

of successor arrows crossing from the past to the future, i.e., crossing a consistent cut

produced by a partial execution, using fewer arrow labels would alter the enabling relation

of the C-element.

The semantics are straightforward. For example, action a + is enabled in any state

containing arrow 1; when it is performed, arrow i is removed from the state and arrow 3

is added. Similarly, action c_+ is enabled and required (because of the bracket) in any state

containing arrows 3 and 4. When it is performed, arrows 3 and 4 are removed from the

state and arrows 5 and 6 are added. Action c- has preset and postset given by: {7, 8) c-

{1, 2}.
Behavior automata are more interesting when branching is involved. A delay-lnsensltive

arbiter has two input ports a and b, and two output ports _c and d. It grants exclusive

access to one of two competing clients at a time. The behavior automaton is shown in Fig.

2.

Clients follow a four-cycle protocol. (A) = _c+] _ a- and (B) = d +] ---* b- are the

two critical sections. The labeling shown, if completed, would be conservative (the state

encoding includes all causality, but is not minimal). Having arrows 8, 9 and 10 in state

encodlngs indicates who made the token available (viz., first client, second client and

reset action). These three arrows are distinct instances of causality that must be checked

separately. Still, there are too many state encodings.

We can group arrows 8, 9 and 10 into an equivalence class t. This does not alter the

enabling relation. Consider performing action £+ in state {1, 5, t}. Causality checking



8.2.4

a +_ 0 _C --_ a+ _a,.

\,/
10

O: _ :1 1: O-----_(A)_ :1 1:
8

b +
5

9

o
Figure 2: Behavior automaton for a delay-insensitive arbiter.

of arrow t requires backing up in the behavior automaton to both possible sources, viz.,

actions a- and b-. In state {1, 5, t}, c_+ and d + are concurrently enabled but conflicting

actions. Verification algorithms that process behavior automata perform both forwards

branc_ng (conflict resolution) and backwards branching (examination of distinct recent

pasts).

After equivalenced arrow t has been defined, we can complete the picture in Fig. 2 to

make it match the formal definition (the labeled arrows leaving posers are derivable from

map o). Consider the second poser command. The top socket is filled only by action a+;

its arrow is labeled 1. The middle socket is filled by any of the actions a-, b- and reset;

its arrow is labeled t. The remaining (interior) poset arrows are given arbitrary distinct
labels.; :: :

3 Correctness as a Graph Problem

We define correctness by using the mirror mP of specification P as a conceptual imple-

mentation tester [1]. Wc form an imaginary closed system S by linking mirror mP of

specification P to the implementation network of processes Net. This produces an infinite

pomtree (event structure) of system events on which two partial orders are defined; sys-

tem correctness is then expressible as a simple, haSlq-y:checked relation between thepartial

orders. The standard model-independent notion of correctness is as follows. Is there a

somewhere, causing system S to become undefined? Does the system just stop,

violating fundamental liveness? Is some progress requirement of P violated? is there

(program-detectable) nondeterminate llvelock in S so that an appeal to fairness of sy._-

tern Components is necessary to assert ' progress? Is some conflict _C0rrespo'nding to output

choice in P resolved unfairly?

Mirror mP is formed by inverting the type of P's actions and the causal/noncausal

interpretation of P's successor arrows, turning P's dashed arrows into solid arrows and

vice versa. Brackets are preserved unchanged. Every action that can be performed in S is

a linked (output action, input action) pair. As a result_ wc can check whether intraprocess

protocols support interprocess protocols in closed system S.

We bootstrap the dashed (noncausal, interprocess protocol) and solid (causal, intrapro-

cess protocol) relations from process actions to system actions, defining an event structure



3rd NASA Symposium on VLSI Design 1991 8.2.5

(sometimes called pomtree) with a noncausal enabling relation on top of the usual causal

enabling one. For example, a noneausal predecessor of system action cr is found by locat-

ing the embedded process input action, stepping back along a dashed process arrow, and[

returning to the system alphabet. We have thus defined "noncausal preset" of a system

action. Essentially, the safety correctness relation is: whenever a dashed arrow links two

system actions, a chain of solid arrows must also link the two actions.

Let _r be a system action that is causally enabled in S. There is a safety violation at o"

unless

(a) its noneausal preset is also causally enabled in S, and

(b) each member of its noncausal preset is a causal ancestor of _r.

The causal preset of cr is defined only when cr is a bracketed system action: it is the set

of nearest performances of linked mP output actions on any causal chain coming into _r.

In order that a bracketed cr in S is neither a safety nor a progress violation, it is necessary

that the causal and noncausal presets of cr match exactly. When backwards branching is

present in S, these conditions are generalized to hold along each distinct past (backwards

branch). Backwards branching is necessary to resolve multiple sources of equivalenced

arrows.

4 Model Checking

The algorithm is straightforward. Starting from system reset, we enumerate causally-

enabled system actions and visit one system cut per action. We consider each enabled

action in a state produced by some partially-ordered past that we have generated. First,

we repeatedly step back across single dashed arrows to compute the action's noncausal

preset. Second, we repeatedly (finitely) chain back across multiple solid arrows to compute

the action's partial causal ancestor set (or causal preset if the action is bracketed). When

equivalenced arrows are encountered, we branch backwards to check each possible source.

The speedup is due to two effects:

I. we effectively check cuts in the generated past that we have passed by without vis-

iting, and

2. for equivalenced arrows, we effectively check cuts in pasts that we have not generated.

This kills state explosion due to concurrency and/or nondeterminism. We traverse

each determinate segment (stick) of the implicitly constructed system behavior automaton

(stick figure) precisely once. Backwards branching catches all causality that would have

been visible had we traversed the system stick figure in some other way. Example system

stick figures are shown in Fig. 3.

We keep the termination table small by making the mapping from P states to S states

one-to-few rather than one-to-many. This is possible when all behavior automata have



8,2.6

2-DME 3-DME 4-DME

Figure 3: System stick figures for the n-DME verification problem.

visible branc_ng and recurrence structure. ExpLicit structure in each component allows

the verification algorithm to uncqve r a structure in system S. In particular, when w e cycle

in P, we can arrange to cycle in S. As a result, termination is achieved by checkpointing

very few global states of system S. Thetop ievei Of the algorithm Visits system actions and

tries to complete P sticks, The lower level of the algorithm does arrow checking.

5 Output-delay-constrained reactive systems

To fix ideas, consider a hardware system that is a space-based component of a missile

defense system; this component receives massive amounts of target-acquisition data asyn-

chronously, and is required to process it in real time and communicate the result. There

are two types of delay constraint that could appear in a requirements specification of such

a_Component, _c_h is a typical reactive system. First, there could be a temporal interval,

l:eiative to _tl_e arrival-of a c0mpietepr0biem instance,-during Which the Compoae_t m_st

respond; this is an output delay constraint. Second, there could be a temporal interval, rel-

ative to the departure of the previous result and/or the arrival of other input, during which

the external world can safely stimulate the component; this is an input delay constraint.

Tl_e simplest d-e_ay-cons_rdned reactive systems are those in which delay constraints are

imposed only on theintraprocess protocol, i.e., on module response; in this case, the

mechanism that ensures input safety is unchanged (the interprocess protocol is stiU re_a!

or virtual handshaking).The difti_cult - case is an interprocess p rotoco!_that specifies wheu

the module can be overwhelmed by high-bandwidth input; we leave the dfifficu]t case for

future work. In our representation, minimum/maximum-delay information is expressed by

putting timing windows directly on output actions. Minimum-delay information may be

freely entered on successor arrows, but maximum-delay semantics is constrained by ques-

tions of physical re/ilizabillty, we choose the following uniform semantics. If bracketed

output action c__is annotated with the temporal interval (train, tmax), then action c__will

be performedno earlier than tmin units and no later than tmax units after the holding of

its presetpre(c_). == _ --

The standard verification algorithm for precedence constraints (described in section

4) can easily be extended to check these new delay constraints. When checking for a



3rd NASA Symposium on VLSI Design 1991 8.2.7

(precedence) safety violation at system action or, we determine whether there is a causal
chain to a from each member of a's noncausal preset, say, pre(o'). First, copy the timing

window on each output action to each of its predecessor arrows. Second, find the sums

of tmin and tmax along all causal chains to _r from each member of its noncausal preset

pre(_). Consider the m_mum delay case. For r e pre(_), define D(_, _) as the ma_mum

sum of tmax values along any causal chain from _- to or. Then system action _r will be

performed no later than max over r of D(-r, a) units after the holding of its noncausal

preset pre(a). For the minimum delay case, define d(v, g) as the maximum sum of tmin

values, and take the rain over r of d(r, o'); _r will be performed no earlier than this many

units after the holding of its noncausal preset.

6 Conclusion

A complete verification package has been written by Lin Jensen in the Trilogy program-

ming language running on an IBM PC. The POM system has polynomial space and time

performance on benchmarks that are exponential in space and time for other verification

systems. Consider the ring of DME elements benchmark. The runtime for verification of

both safety and progress properties is quadratic in n, the number of DME elements. The

number of system states grows exponentially with n. For example, when when n = 9, the

_time is i80 s (roughly 109 states); when n = 10, the time is 220 s (roughly 101° states). The

space requirements for these problems do not exceed 64K bytes, i.e., one IBM PC data seg-

ment. What are the compiler-independent space requirements? One must store the input;

this is linear. One must store the termination table; this is quadratic. Given reasonable

garbage collection, the working storage to do backwards chaining in a partially-ordered

system computation is linear, because one constructs and compares simple presets. The

limiting resource is the quadratic space used to store the termination table. To repeat,

both space and time are quadratic, in this example, to verify a concurrent system with

exponentially many states. Building up the actual partially-ordered system computations

themselves is unnecessary; we work directly with the uncomposed behavior automata of

the system components. We have also shown, at least in the simple case of output-delay-

constrained reactive systems, that verifying temporal window constraints is barely more

expensive than verifying precedence constraints. In general, the achievable efficiency of

a real-time verification algorithm is a sensitive function of the precise abstraction of real

time used in the model.

References

[1] D.L. Dill, "Trace theory for automatic hierarchical verification of speed-independent

circuits"_ PhD Thesis_ Department of Computer Science, Carnegie Mellon University,

Report CMU-CS-88-119, February 1988. Also MIT Press, 1989.



8.2.8

[21

[3]

A. 3. Martin, "Compiling communicating processes into delay-insensitive VLSI cir-

cuits", Distributed Computing, Vol.1, No.4, October 1986, pp. 226-234.

V. R. Pratt, "Modeling concurrency with partial orders", !at. J. of Parallel Prog.,
Vo!.15, No.l, February 1986, pp. 33-71.

[4] D. K. Pr0.bst and H. F. Li, "Abstract specification of synchronous data type_ f9r

VLSI and proving the correctness of systofic network implementations", IEEETrans.

.on Computers, Vol. C-37, No. 6, June i988, pp. 710-720.

[5]D. K- Pr0hst a.n.d.H.F. Li, "Abstract specification, composition and proof of cor-

rectness of delay-insensitive circui.ts and systems", Technical Report, Department of

.Cpmputer Science, Qp_cordia U_iversity, CS-VLSI-88-2, April 1988 (Revised March
1989).

[6]D. K. Pr0bst and H. F. Li, "Par ti_-order model checking of delay-insensitive sys-

tems". In R. Hobson et al. (Eds.), Caua_iaU C0nference on VLSI 1989, Proceedings,
_Vancouver, BC, October 1989_ , pp: 7.3_-80:

.. _ "_ S ° , :_., ...... " .[7] D. K. Probst a.nd H. F. Li, U mg partml-order semantlcs to avoid the state expl0s_ion

problem in asynchronous systems"...Io E M...........Clarke and R. P. Kurshan, (Eds.), Work-

shop on Computer-Aided Verification '90, D!MACS Series, Vol. 3, 1991, pp. 15J24.

Also Leer. Notes in Comput. Sci., Springer Verlag, forthcoming.

[8] D...........K. Probst a_nd H. F. Li, "Partml-order".... model checking:" A guide .... for the perp!exed".

In K. G- Larsen and A. Skou, (Eds.), Workshop on Computer-Aided Verificationf91,

Proceedings, Department of Ma.thematies and Computer Science, Aalborg University,

Report IR-91-5, July 1991, pp. 405-416. Also Leer. Notes in Comput. Sci., Springer
Verlag, forthcoming.

[9] J.v.d. Snepscheut, "Tra.ce theory and VLSI design", Lect. Notes in Comput. Sci. 200,
Springer Verlag, !985.

[10] J.T. Udding, "A formal _aode! for definingand:classlfying delay-insensltive circuits",

Distributed Computing, Vol. 1, No. 4, October 1986, pp. 197-204.

m:

_-z-



3rd NASA Symposium on VLSI Design 1991

N94-18366
8.3.1

Formal Verification of an MMU and MMU Cache

E. T. Schubert

Division of Computer Science

University of California, Davis

Abstract - We describe the formal verification of a hardware subsystem consist-

ing of a memory management unit and a cache. These devices are verified in-

dependently and then shown to interact correctly when composed. The MMU

authorizes memory requests and translate virtual addresses to real addresses.

The cache improves performance by maintaining a LRU llst from the memory

resident segment table.

1 Introduction

Computers are being used in areas where no affordable level of testing is adequate. Safety

and life critical systems must find a replacement for exhaustive testing to guarantee their

correctness. Through a mathematical proof, hardware verification can formally demon-

strate that a design satisfies its specification. However, hardware verification research has

focused on device verification and has largely ignored system composition verification [1].

Our research is directed towards developing a methodology to verify a hardware base for

a safety critical system. The top level hardware specification is apt to suggest a unitary

implementation. This abstraction is convenient for verifying the correctness of software,

however, the implementation consists of many different interacting components (CPU,

memory, coprocessors, I/O devices, bus controllers, interrupt controllers, etc). This paper

will describe our efforts to verify a subsystem consisting of a MMU and its cache using the

HOL theorem prover [2].

The abstract MMU reported in [3] assumed a memory model where a read request was

satisfied in one cycle. We extend the MMU to interact with an asynchronous memory.

Additionally, the memory is more fully described; providing read and write functions.

These changes required several significant changes to the abstract MMU proof script. The

original proof strategy took advantage of the single cycle response time. The new strategy

must use two arbitrary contents to define when memory words are returned from the

memory-cache subsystem.

1.1 Related Work

Hardware verification requires that the design of a system is formally shown to satisfy

its specification through a mathematical proof. Using theorem proving techniques, an

expression describing the behavior of a device is proven to be equivalent in some sense

to an expression describing the implementation structure of the device. These expressions

concisely describe the behavior of devices in an unambiguous way' An additional benefit of

hardware verification is that the behavioral semantics of=the hardware are clearly defined.

This provides an accurate basis for building Correct software systems [5].



8.3.2

Hardware verification efforts thus far have focused primarily on a microprocessor as

the base for computer systems [6], [7], [8], [9]. The processors verified have modeled small

instruction sets and generally, have not included modern CPU features such as pipelines,

multiple functional units and hardware interrupt support. Tamarack-3 [9] and AVM-1 [10]

do provide sufficient interrupt support to connect with an interrupt controller. However, no

system currently verified provides the memory management functions necessary to support

a secure operating syste_m_. _ :

Previous efforts tO Verify systems have constructed vertically verified systemJ with a

microprocessor/memory as the system's base [11],[5],[1]. These efforts have aimed at il-

lustrating how hardware verification can be used to close the semantic gap between high

level languages and t_he co-rnpute_s_1"nst-ruction seT. loiterer, (he base for these systems (a

microprocessor-memory pair) has been an unrealistic hardware platform.

1.2 HOL

The object language of HOL is a formulation of higher-order logic. Universally quantified

Variables are used to specify input and output device lines while internal device lines are

existentially quantified. Conditional expressions are in the form: cond -:4then-clause [

else-c!aiise. : : : -: :

HOL provides the human verifier with a Seiecti0n of tactics f'or use in goal-directed

proofs. The tactlcs are very similar to the kinds of steps a human theorem prover would

take in SoIvlng a goal' New tactlcs Can be written that allow the theorem prover to be

extended and customized for a particular task. New theorems can only be created in

a controlled manner. All proofs can be reduced to one c0ntain]ng only the 8 primitive

inference rules and 5 primitive axioms, High-level inference rules and tactics derived from

some comb_nat{on of primitive inference: rules. -:

The foliowing HOL expression defines an and gate implementation using an inverter

and a nand gate. The existentially quantified variable p, represents an internal line which

links the output of the nand gate with the input of the inverter.

_d,tandGato a b out = 3p.nand a b p A inv p out

2 Memory Management unit

[12] describes a number of memory management units which form a complexity hierarchy.

By developing a sophisticated MMU in steps, the construction of the final proof appears

to be more tractable' The simpler devices validate access to fixed[ length memory pages

while the more complex devices authorize read, write or execute access to variable length

_segments=_d =translate virtual addresses_t-o real--add_resses :. lVIany of ti_ese devices-were

designed and verifle-cI tot_hegatd]hvel. However, as ttle complexity increases, the emphasis

of the verification shifts from gate level connections to the correctness of the operating

system suppgrtfeatures::: :_

The device deScrlbed below V_{es memory reqUests based' on ini_ormati0n maintained

in a memory resident segment descriptor table. The location of the table is determined by a



3rd NASA Symposium on VLSI Design 1991 8.3.3

segment table pointer register which is accessible only during supervisor operations. Each

descriptor consists of two words: the first contains access control.... information (present bit,

read/write/execute permissions, segment size) and the second serves as the base address

for the segment's real location in memory. To translate from a virtual address to a real

address, the MMU adds the segment offset to the segment base address. The MMU assumes

the table provides an entry for all possible segment descriptors.

A generic theory for a class of MMU devices is defined where several functions and

data types are left abstract. Using an abstract representation, details such as word length,

can be omitted and the verification focuses only on the correctness of higher level abstrac-

tion (e.g. electronic block level rather than gate level). At a later point, the abstract

representation can be instantiated with components that implement concrete behavior.

Support for generic or abstract theories is not directly provided by HOL. However,

a theory about abstract representations can be defined in the object language [10]. An

abstract representation contains a set of uninterpreted constants, types, abstract operations

and a set of abstract objects. The semantics of the abstract representation is unspecified.

Inside the theory, we do not know what the objects and operations mean. The abstract

theory package also creates a set of selector functions [11] to extract desired functions from

an abstract representation.

The abstract MMU representation generalizes traits particular to concrete implemen-

tations. Properties such as the the exact security policy and division of a virtual address

into a segment identifier and offset (as well as the overall number of bits in an address),

are hidden by functions which given an address, return the segment identifier or segment

offset field (segId and segOfs, respectively). There is also a function segIdshf which

returns the offset of a segment descriptor within the memory resident segment table for

a given address. Since descriptors require two words, the implementation of this function

simply shifts the segment identifier to the left one bit position (e.g. it adds a trailing zero

bit).
The abstract functions selected by avai!Bit, readBit, writeBit and execBit extract

a bit value from an argument of type *wordn. These functions are applied to the first word

of a segment descriptor.

Several functions which operate on two-tuples are available. Given a pair of *wordn

values, add returns a value of *wordn. Functions addrEq, ofsLEq and valiflAccess replace

the bitVector comparison units defined for the more Concrete units.

Additional abstract coercion functions are available to convert values between types. If

the theory were instantiated, the abstract types would likely be implemented with bitVec-

tots; leaving these functions unnecessary.

Memory is also treated abstractly. The abstract representation provides a fetch function

fetch.



8.3.4

let mmu_abs =
[
('sogld _,

('segOfs',
('segIdshf',
('availBit',
('readmit',
('.ri_eBi_',
('exeeBi_',

new_abstract_representation

":(*address -> *wordn)" );

":(*address -> *wordn)" );

":(*address -> *wordn)" );

":(*wordn -> bool)" );
":(*wordn -> bool)" );

":(*wordn -> bool)" );
":(*wordn -> bool)" );

('add', ":(*wordn # *wordn ->*wordn)" );

('addrEq', ":(*address # *address -> bool)" )_ ,___
('ofsLEq', ":(*address # _ -> bool)" );
('validAccess',

*':(*address # *wordn # RWE '> bool)");
('va!', ":(*wordn -> num)" );
('wordn'. ":(hUm-> *wordn)" );
('address', ":(*wordn -> *address)" );
('fetch', ":(*memory # *address) -> *gordn");

. ; E

A type abbreviation RWE is also defined to be a three tupie of bit values. Seiector

functions rBIT, gBIT and eBIT access the first, second and third bits, respectively.

2.1 Specification

The Spccifieatlonisdecomposed into severalrules and ignores timing characteristics.The

state and output environment of the MMU specificationis a three-tuple consisting of a

boolean acknowledgment, a memory address and the table pointer register value. The

variable r in the definitionsbelow is the abstract rcpresentatlon.

Functions superMode and userModo describe the behavior of the MMU when operating

in their respective modes, legalAccess uses many of the abstract functions to fct-ch

from memory the appropriate segment descriptor and compare itwith the request's acfess
parameters, vToR constructs a real address fi'om a virtual add_dgs......

Z

z

}--a,llegaIAccessr vAddr tbIPtrrwe mere = leta = (fetchr)(mern,(addressr)((addr) (segidshfr

vAddr,tblPtr)))in ((validAccessr) (vAddr,a,rwe) A (ofsLEq r) (vAddr,a))

}-d,/vToRr vAddr tbIPtrmern = leta = (fetchr)(mem,(address r)((addr)((wordn r 1),(add

r)(segldshfr vAddr,tbIPtr))))in(addressr)((add r) (segOfsrvAddr, a))

_-a,/superMode r vAddr rwe tbIPtrADDR tb!Ptr data rnem = ((wBIT rwe) A (addrEq r

(vAddr,tbIPtrADDR))) _( T, vAddr, data ) -- ( T, vAddr, tbIPtr)

_-dduserMode r vAddr rwe iblPtrADDR tblPtrdata mem = legaIAccessr vAddr tbIPtrr-we

mern _( T, (vToR r vAddr tbiPtrmere),tbIPtr)-- ( F, vAddr, tbIPtr)..........

l-d_/mrnu-specr vAddr rwe tbIPtrADDR tblPtrdata rnem superv = superv _superMode r

vAddr rwe tbiPtrADDR tbIPtr data mere -- userMode r vAddr rwe tbIPtrADDR tbIPtr data mern

D



3rd NASA Symposium on VLSI Design 1991 8.3.5

2.2 Implementation

The implementation is constructed from electronic block model components. These are

defined as specifications for the behavior of a gate level implementation. Many of the

devices specify their timing behavior as well. The building blocks consist of a security

comparison unit, an address match unit, a memory fetch unit, an adder, registers, latches,

muxes, and a control unit. Most of the device definitions are straight forward with the

exception of the memory and the control unit. These two units will be described in greater

detail.

_def secUnit_spec r a b rwe ok = V t. ok (t+l) =
((validAccess r) ((a t),(b t),(rwe t)) A (ofsLEq r) ((a t),(b %)))

_dd addUnit_spec r a b ¢ = V %:num. c (t+l) = (add r ( (a t),(b t) ))

_-d4 muxUnit_spec r a b out w =V t.(out(t+l))=(w(t+l)) ---* address r(b(t+l))[(a %)

_e/ mux3Unit_spec a b c out w = V t:num.

(out t)=(w t = 0)--* a t ] (w t = 1)--* b % { c t

_def splitUnit_spec r virt id ors = V t:num.

((id t) = (segldshf r) (rift t)) h ((ors t) = (segOfs r) (virt t))

_del latchUnit_spec r i out ctrl = V t:num.
out (t+l) = ctrl (t+l) -* out t [ (i (t+l))

_del regUnit_spec r i Id clr out =
(V t:num, out(t+l)=(clr t-_ (wordn r 0 ) I id t -* i tl out %))

A (out 0 = (wordn r O) )

_d4 matchUnit_spec r a b m = V (t:num). re(t+1) = (addrEq r (a t, b t)) -* T ] F"

Memory Unit

As a first step towards composing devices, the memory specification used for the MMU

verification is significantly expanded from the model used in [3]. The earlier model assumed

a read-only memory that returned a value one clock cycle after a request was made. The

new model defines asynchronous read and write operations. This model makes an implicit

assumption that each memory request is satisfied before the next request is generated.

Most of the new proof effort centered on establishing the correctness of the MMU control

unit with the new memory specification.

_de/ memoryUnit_spec r req rwe addr data done mem =

(done 0 = F) A

(V t. (req t) -*
(3 t'. Next done (t, t+%') A

(wBIT (rwe t) =>
( (mem (t+t') = store r (mem t,addr t0data t) )

( (data (%+%') = fetch r (mem t,addr t) ) A

(mem (t+%') = mem t) ) ) )

l
( (done (t+l) = F) A

(mem (%+i) = mem %) ) )

) I

Control Unit

To process each memory request, the control unit will pass through several clocked

phases. At each clock tick the control unit may change its phase depending on the results

computed by the other internal units and the MMU input from the system bus. The control

unit state is maintained by the variable phase. There are six distinct phases, however,



8.3.6

not all phases are executed for each request. Which phases are executed depends on the

validity of the memory request. Request evaluation begins with the control unit in phase

0 and completes when phase 0 is again reached. A valid request will require five ph_s

with a delay of at least one time unit before each phase change.

vAddr

selId
teiOft

d,t, ] .dd,_.. [
| comp=re I

Addex _ [ tait ]

Compsre

Uuit

Jlper

fdone I

doae

ACK
RWB

rAddz

Figure 1: Abstract MMU Internal Block Diagram

T_ne dataPath definition describes the interconnection between all the units other than
the control unit. =

Fde/ dataPath r vAddr vData rwe mem tblP_rADDR tblPtr rAddr muxC

tmpC _blC IC rReq xlat ma_ch secOK fdone =

3 (muxl mux2 id ors addOut data la*Out secData.

(regUnit_spec r vData t_blC bi%FaIso tblP*r) A

(regUnig_spec r da_a tmpC bitFalse secData) A

(secUnit_spec r vAddr secDa_a two secOK) A

(spli_Uni__spec r vAddr id ors) A

(mux3Uni__spec iu ors (oneUni*_spec r) mUxl muxC) A
(mux3Unit_spec

(addUnit_spec

(latchUnit_spec
(matchUniZ_spec

(muxUni__spec

(memoryUni__spec

tblPtr da_a latOut mux2 muxC)

r muxl mux2 addOu_) A

r addOut laYOut IC) A

r vAddr _blP_rADDR match) A

r vAddr latOu_ rAddr xla_) A

r rReq rAddr data fdone mem)

/X

The implementation definition connects the datapath with the control unit. The state

consists of the table pointer register value, the security Data register and the control unit

phase (tblPtr, secData, phase): The input env_n-ment-is provided by-the system bus

and the memory (vAddr, vData, rwe, superv, reqln, raem). The output environment

includes a real address and several control unit outputs (rAddr, done, ack, xlat ). The

memory address of the table pointer register is specified by the constant tblPtrADDR.

Correctness Statement

Several auxiliary definitions are used to express the final correctness statement. To

relate the implementation to the specification, a temporal abstraction is constructed using

the two predicates Next and First[9]. The predicate First is true when its argument t is

the first time that g is true. The predicate Next is true when t_ is the next time after tl
.................................



3rd NASA Symposium on VLSI Design 1991 8.3.7

bdt! controlUnit_spec reqIn super rwe match secOK fdone muxC tmpC tblC
IC rReq xlat done ack phase =

((muxC O,tmpC O,tblC 0,1C O,rReq O,xlat O,done O,ack O,phase

O)=(O,F,F,F,F,F,F,F,O))
A
(V t .(muxC(t+l),tmpC(t+l),tblC(t+l),iC(t+l),rReq(t+l),xlat(t+i),done(t+l),

M ttl rxda Pack(t+l),phase(t+l) ) =

(phase t = O) -_ (reqIn t -_

(phase t = 1) -_ (super t -_

((wBIT (rwe t)) A match t) -_

((phase t = 2) A

((phase t = 3) A

(phase t = 4) -_

Z U mba eloc H

X plt qtnk A
( O, F,F,F, F,F,F,F, I) [

( o, F,F,F, F,F,F,F, 0)) I

( O, F,T,F, F,F,F,F, 5)

( O, F,F,F, F,F,T,T ,0)
( 2, T,F,T, T,T,F,F, 2))

fdone t) -_ ( I, F,F,F, T,T,F,F, 3)

fdone t) _ (secOK t _ ( O, F,F,F, F,T,F,F, 4)
( O, F,F,F, F,F,T,F, O))

( O, F,FsT, F,T,T,T, O)

(phase t = 5) -_ ( O, F,F,F, F,F,T,T ,0)
(muxC t,tmpC t,tblC t,lC t, F ,xlat t,done t,ack t,phase t))

that g is true. The predicate stable_sigs states that between tl and t$ the MMU inputs

will remain constant.

5d4 First g t = (V p:time, p<t _ _(g p)) A (g t)

Fd4 Wext g (tl,t2) = (tl<t2) A

(V t:time . tl<t A t<t2 _ _ (g t)) A (g t2)

Fd4 stable_sigs tl _2 vAddr rwe tblP_rADDR data

mem super = V t'. _I < t' A t' < t2

(super t' = super tl) A (vAddr t' = vAddr tl) A

(data t' = data tl)

(rwe t' = rwe tl) A

A (tblPtrADDR t' = tblPtrADDR tl) A (mem t' = mem tl)

The correctness theorem states that if the implementation is in phase 0 and a memory

request is made, the implementation will eventually respond (c time steps later), when

the state of the implementation matches the state defined by the specification for a set of

given MMU inputs. The inputs must remain stable until the MMU responds to a request.

If a memory request is not made, the acknowledgment line remains F, the phase remains

0 and the MMU table pointer register remains unchanged.

mmu_imp r vAddr vData rwe super tblPtr tblPtrADDR

reqln rAddr done ack xlat mem phase

(V t. (phase t = O)

(reqln t -_
(3 C. Next done(t,t + c) A (phase(t + c)=O) A

(stable_sigs t (t + c) vAddr rwe tblPtrADDK
vData mem super

(mmu_spec r (vAddr t) (rwe _) (tblPtrADDR t)
(tblP_r t) (vData t) (mem t) (super t)

= ack(t + c),rAddr(t + c),tblPtr(t + c))))

[ ( (ack(t + I) = F) A

(phase(t + 1) = O) A

(tblPSr(_ + I) = tblPtr t) ) ))



8.3.8

3 Memory Subsystem

An initial design integrated a FIFO cache stack inside the MMU but here we model a fully

associative cache as part of the memory subsystem. The cache is described as a lookup

table and implements a least recently used (LRU) replacement strategy. Each table entry

consists of a key, a related data word, and a boolean indicating whether the entry is active.

We wiI1 first describe the specification of the LRU replacement strategy in HOL, followed

by the cache implementation.

TAB_ErrR¥ = a:bo6ig*address#*worda _ : type
TAB = ":('TAB_ENTRY)iist" : type

F_e! 1iv6 entry = (FST entry)

_d4 key entry = (FST (S_D entry))
_de! con_en_ entry = (SND (SSD entry)) _ :

Severs/auxiliary (recursive) definitions describe table operations below. When an entry

is inserted into the top of table, the entry at the bottom will be lost only when the table

is "full" (all entries are live). In this respect, the tabie acts as a queue.

(TAB_FULL. tbl (SUC n) : (live (EL (SUC n) _5i) A TAB_FULL tbi h_)

_d4 (TAB_INSERT tbl entry 0 =[entry]) A

((TAB_FULL tbi n) -_ [(EL n tbl)] [ [(EL (SUC n) tbi)]) )

Atabie iookup is successful i_ t_ere is a key match for one of the entries. For a table

size of n, TAB_lIT-returns('S-UC n) if the lookup fa_is. = ....
L

F&/ KEY_MATCH top tbl sg:*address n =

(live(EL n tbl) A ((addrE q rep) (key(EL n tbl),
_t/ (TAB_HiT rep tbl sg m 0

((KEY_MATCH rep tbl sg O) -_ 0 I (SUC m)))

(TAB_HIT rep rbl sg m (SUC n) =

((KEY_MATCH rep tbl sg (SUCn)) -_ (SUC n)

sg)) )

A

TAB_HIT rep tbl sg m n))

Frequently, a single matched entry must be invalidated. This can occur due to the LRU

policy or a memory write operation. Occasionally, the entire cache must be invalidated at

the request of the operating system. The LRU policy requires that if a key match occurs,

the entry be inserted at the top of the table. By invalidating the matched entry before

the insertion, a table overflow will not occur. LRU_LOOKUP returns the requested data value

and the updated cache table.



3rd NASA Symposium on VLSI Design 1991 8.3.9

_de/ ENTRY_INVALIDATE entry = (F ,key entry, content entry)

_d4 (TAB_INVALIDATE tbl 0 = [(ENTRY_INVALIDATE (EL 0 %bl))] ) A

(TAB_INVALIDATE tbl (SUC n) =

(APPEND (TAB_INVALIDATE tbl n) [(ENTRY_INVALIDATE (EL (SUC n) tbl))]))

_dd (DEL_TAB_ENTRY rep tbl sg 0 =

((KEY_MATCH rep %bl sg O) -_ [(ENTRY_INVALIDATE (EL 0 %bl))] [

[(EL 0 tbl)] )) A

(DEL_TAB_ENTRY rep tbl sg (SUC n) =

(APPEND (DEL_TAB_ENTRY rep tbl sg n)

((KEY_MATCH rep tbl sg (SUCn))

-. [(ENTRY_INVALIDATE (EL (SUC n) %bl))]

[ [(EL (SUC n) tbl)] )))

bd4

entry n

5d4 LRU_LOOKUP rep mem tbl n addr data newTbl =

let who = (TAB_HIT rep tbl addr n n) in

((who = (SUCn))

-* ( data = fetch rep( mem. addr)

LRU_REPL rep %bl entry n = TAB_INSERT (DEL_TAB_ENTRY rep %bl (key entry) n)

A

newTbl = TAB_INSERT tbl (T,addr,(fetch rep(mem, addr) )) n )

(data = (content (EL who %bl) A

newTbl = LRU_REPL rep tbl (EL who tbl) n)

Using the above definitions, the cache-memory subsystem can be defined. This defini-

tion replaces memoryUnit_spec in the MMU specification and the new system is verified

in a similar manner. The proof shows that the cache/memory system is consitent with the

MMU memory model requirements.

5d4 cache_mem_spec r req rwe addr data done mem tbl n =

(done 0 = F) A

(V t. (req t) -_

(3 t'. Next done (t, %+%') A

(wBIT (rwe t) =>
( (mem (t+t') = store r (mem t,addr t,data t) ) A

(tbl (t+t') = DEL_TAB_ENTRY r (tbI t) (addr t) n ) I

( LRU_L00KUP r (mem %) (tbl t) n (addr Z)
(data (%+%')) (tbl (%+t'))) A

(mem (t+t') = mem t) ) ) )

( (done (t+l) = F) A

(mem (t+l) = mem %) A

(tbl (%+1) = tbl t) ) )

Cache Implementation

The cache implementation consists of a control unit and a stack of cache cells. Cache

cells are the instantiation of the table entries described above--their state consisting of



8.3.10

I|J|e

]
nOW state

found Lbove

found

d_t6

dale

replS|u|e
,|n|!

I I
lOW ,tote

spLrela

,pzrceO!t

I found above dat,

[ found dstJ

Figure 2: Cache Cell Stack

the three tuple: (valid, address key, data). The action of each cache cell is defined by a

two bit function code (req) sent by the cache control unit. The stackis formed by joining

the outputs o£ a cache unit to the inputs of the next.

bad (cache_block r state req sparceIn foundIn addr repiState data__n _ = _

cache_cell rep 0 req addr replState (state,sparceIn,foundIn,datain))
A

(cache_block rep state req sparceIn foundIn addr replState dataIn (SUC n) =

(cache_cell rep (SUC n) req addr (EL n state)

(cache_block rep state req sparceIn foundIn addr replState detain n)))

_de/

let state = (EL n stateIn) iH ......................

1-e_ match ( addrEq rep(addrok_ystat-e) h live state ) in

(req = (F,F)) --* _ IDLE _ .....

(stateln, foundIn, (sparceIn V "live state), dataln ) J
(req = (F,T)) -_ _ INVALIDATE ON MATCH

( match -_

(SET_EL n stateIn(F,key state,content state), T, T, content state ) J

(sta%eln, foundIn, _sparceIn Y "live state), dataIn) ) J
(req = (T,F)) _ _ INVALIDATE

(SET_EL n stateIn(F,key state,content state), foundIn, T, detain ) j

_re 9 = (T,T) -_ PUSH DOWN Z

( sparceIn -_

_sta_o_n, _ f0un_n_ - T, content state ) I

......... (SET_EL n stateIn replState, foundIn, F, dataIn) )

cache_cell_spec rep n req addr replState (stateIn,sparceln,_oundIn,dataIn) =

When a memory request is made, the control unit signals each cache cell to invalidate

its entry if its key matches the input address (F ,T). Memory write requests are also passed

through to memory. If a read request is pending and the value is not in the cache, the

value is fetched from memory. We assume one clock cycle is needed to read a value out of

the cache if it ls available. After the value fetch step is completed,the control unit pushes

the new value onto the cache cell stack by issuing request (T,T).

tin:



3rd NASA Symposium on VLSI Design 1991 8.3.11

To model memory, the cache implementation uses the same memory unit specification

(memoryUnit_spoc) stated previously. We then verify that the implementation behaves

as specified. The implementation also provides a means of invalidating the entire table

(request (T,F), however, this function is not present currently in the specification.

4 Summary

We have described the formal verification of an MMU and cache/memory subsystem.

The MMU has been verified to perform correctly with an asynchronous memory model.

The cache specification defines an LRU replacement policy which is implemented by an

electronic block level design. The cache is also demonstrated to be consitent with MMU

memory model requirements.

It has been convenient to represent the behavior of devices using abstract representa-

tions. This mechanism allows the verification effort to focus on the correctness of higher

level abstraction. To verify a more concrete implementation, the abstract representation

can be instantiated with components that implement concrete behavior. Extending this

example, we plan to demonstrate how a complete system composed of many devices can

be shown to correctly implement an abstract system specification.

References

[1] W. R. Bevier, "Kit and the Short Stack," Journal of Automated Reasoning, vol. 5,

1989.

[2] M. Gordon, "HOL: A Proof Generating System for Higher-Order Logic," in VLSI

Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,

eds.), Kluwer Academic Press, 1988.

[3] E. T. Schubert and K. N. Levitt, "Verification of Memory Management Units," _.nd

IFIP Working Conference on Dependable Computing for Critical Applications., Febru-

ary 1991.

[4] E. T. Schubert, "Formal Verification of an LRU Cache in Higher Order Logic," tech-

nical report CSE-91-, University of California, Davis, September 1991.

[5] W. R. Bevier, W. A. Hunt, and W. D. Young, "Toward Verified Execution Environ-

ments," [EEE Symposium on Security and Privacy, 1987.

[6] A. Cohn, "A Proof of Correctness of the VIPER Microprocessor: the First Level," in

VLSI Specification, Verification, and Synthesis, (G. Birtwhistle and P. Subrahmanyam,

eds.), Kluwer Academic Press, 1988.

[7] W. A. Hunt, "A Verified Microprocessor," Technical Report 47, The University of

Texas at Austin, Dec. 1985.



8.3.12

[8] W. A. Hunt, "Microprocessor Design Verification," Journal of Automated Reasoning,

vol. 5, 1989.

[9] J. J. Joyce, Multi-Level Verification o/Microprocessor-Based Systems. PhD thesis,

Cambridge University, December 1989.

[10] P. J. Windley, The Formal Verification o/Generic Interpreters. PhD thesis, University

of California, Davis, 1990.

[11] J. J, J0yee, _'Totally Ver{fied Systems: Link{ng Verified Software to verified Hard-

Ware, _ Hardware Specification, Verification and Synthesisi Mathematical Aspects, july
iVdg. ...............................

[12] E. T. SchUbert, t'Verification of Memory Management Units using HOL," technical

report CSE-90-27, University of Cailfornia, Davis, August i990.

7



3rd NASA Symposium on VLSI Design 1991

N94-18367
8.4.1

Formal Hardware Verification of
Digital Circuits

J. Joyce and C-J. Seger

Department of Computer Science

University of British Columbia

Vancouver, B.C.

Canada V6T 1W5

Abstract- The use of formal methods to verify the correctness of digital circuits is

less constrained by the growing complexity of digital circuits than conventional

methods based on exhaustive simulation. This paper briefly outlines three

main approaches to formal hardware verification: symbolic simulation,state

machine analysis, and theorem-proving.

1 Introduction

Advances in VLSI fabrication technology have greatly outstripped 'verification capacity'

-- that is, the capacity of conventional methods for demonstrating that the design of a

circuit is correct with respect to a specification of its requirements.

Verification capacity has fallen behind fabrication technology because conventional ver-

ification methods do not scale with complexity. These methods are generally based on

simulation -- they do not scale because the number of simulation cases is likely to increase

exponentially if one attempts to maintain the same degree of coverage.

Considerable effort has been made to increase, in a brute-force manner, what coverage

can be achieved with simulation. One approach is to distribute the simulation cases over

a large number of machines running identical versions of the simulation model. Another

brute-force approach has been the development of special-purpose simulation hardware

to increase the speed of a simulation by several orders of magnitude. However, these

techniques do not offer a satisfactory, long-term solution for verifying digital designs by

exhaustive simulation because, in general, the number of simulation cases grows exponen-

tiaUy with the number of components in a design.

Of course, it may be argued that it is not really necessary, for any practical purpose,

to exhaustively simulate a design in order to detect every error in a design. Instead, it

would be argued that it is only reasonable to simulate the design for a feasible number

of representative cases. However, this assumes that there is general-purpose, systematic

method for finding a truely representative set of simulation cases. Although one can easily

imagine a systematic way of generating some obvious cases, it is clear that digital systems

often fail at the "confluence of unrelated or seemingly unrelated events" [25].

Formal methods offer considerable hope for verification techniques which are better able

to scale with the complexity of VLSI designs. We can identify three distinct approaches

to formal hardware verification, namely, symbolic simulation, state machine analysis, and

theorem-proving. These formal ai_proaches to hardware verification are better able to scale



8.4,2

with the complexity of VLSI designs because they exploit powerful tools of mathematics

rather than brute-force. A good example isthe use of the mathematical induction which is

a mainstay of the theorem-proving approach to formal hardware verification.All of these

approaches are supported by so_--Q-aare_ools many of which have been under constant

development for the lastdecade Or longer.

2 The Symbolic simulation Approach

The concept of symbolic simulation was first proposed by researchers in the late 1970's as a

method for evaluating register transfer language representations [11]. The eariy programs

were very limited in their analytical power since their symbolic manipulation methods were

weak. Consequently, symbolic simulation did not evolve much further until more efficient

methods of manipulating symbols emergedl The development of OrderedB_nary Decision

Diagrams (OBDDs) for representing Boolean functions [8] radically transformed symbolic
simulation.

The first "post-OBDD" symbolic simulators were simple extensions of traditional logic

simulators [7].In these symbolic simulators the input values could be arbitrary Boolean

expressions over some Boolean variablesrather than only 0's,l's (and possibly X's) as in

traditionallogic simulators. Consequently, the resultsof the simulation were not single

values but rather Boolean functions describing the behavior of the circuitfor the set of

all possible data represented by the Boolean Variables. To illustrate this idea, consider

the (pseudo) Domino CMOS circuit shown in Fig. 1. If the circuit is clocked correctly,

the inputs are stable long enough before the clock goes high, and the inputs and clock

signal are then kept stable, the output node should eventually change to 1 if and only

if the number represented by the 4-bit binary input vector a is greater than the number

represented byt_e 4-bit binary _nput_vector b I and both numbers are _ grekter-;han-2erol

In a simple OBDD-based symbolic simulator we would simply apply the Boolean input

variables at the correct time and in the end compare the value on the output node with
the Boolean function"

. =

A verifier based on symbolic simulation applies logic simulation to compute the circuit's

response to a series of stimuli chosen to detect _posslble design errors. Wh_n-a-drcu]t has

been "verified" by slrnul_a_ion, thls means that any further simulation would not uncover

-any errors, t/ence/tile probiern of verifying the correctness of a design becomes one of Sim-

ulating a large number of input patterns. Selecting such a set of simulati0n patterns is a

nontrivial task, since errors that arise during the design process Cannot be easily character-

ized. Designer's misconceptions, incomplete or inconsistent specifications, and carelessness

on the part of the designer can cause the resulting Circuit to behave unpredictabIy_NVorst

of all, it may misbehave only under unusual combinations of circumstances. Rather than

trying to postulate a simplified _'fault model" for design errors, it is_more appropfiate_o

E

m

=

=__



3rd NASA Symposium on VLSI Design 1991 8.4.3

a a2 b2 a I b ao bo

¢. idt _ _

b3

A

Out

Figure 1: Circuit for computing A > B > 0.

adopt a philosophy that design verification must work against a malicious adversary. That

is, given a proposed simulation test, the adversary will attempt to create a circuit that

does not fulfill the specification, yet passes the test. A circuit is considered "correct" only

if no adversary can defeat the simulation test. Thus, when a circuit has been "verified" by

simulation, this means that any further simulation would not uncover any errors.

Since a symbolic simulator is based on a traditional logic simulator, it can use the same,

quite accurate, electrical and timing models to compute the circuit behavior. For example,

a detailed switch-level model, capturing charge sharing and subtle strengths phenomena,

and a timing model, capturing bounded delay assumptions, are well within reach. Also--

and of great significance--the switch-level circuit used in the simulator can be extracted

automatically from the physical layout of the circuit. Hence, the correctness results will

link the physical layout with some higher level of specification.

Recently, Bryant and Seger [10] developed a new generation of symbolic simulator

based verifier. Here the simulator establishes the validity of formulas expressed in a very

limited, but precisely defined, temporal logic. This temporal logic allows the user to express

properties of the circuit over trajectories: bounded-length sequences of circuit states. The

verifier checks the validity of these formulas by a modified form of symbolic simulation.

Further, by exploiting the 3-valued modeling capability of the simulator, where the third

logic value X indicates an unknown or indeterminate value, the complexity of the symbolic



8.4.4

manipulations is reduced considerably.

This verifier supports a verification methodology in which the desired behavior of the

circuit is specified in terms of a set of assertions, each describing how a circuit operation

modifies some component of the (finite) state or output. The temporal logic allows the user

to define such interface details as the clocking methodology and the timing of input and

output signals. The combination of timing and state transition information is expressed

by an assertion over state trajectories giving piopertles the circuit state and output should

obey at certain times whenever the state and inputs obey some constraints at earlier times.

This form of specificati0n wor_s very well for drcuits that are normally viewed as

state transformation systems, i.e., where each operation is viewed as updating the circuit

state. Using a prototype system,-a s]mp]e-32-blts microprocessor and asignificant portion

of a modern 32 bit RISC microprocessor have been verified. These circuits contained

around 15,000 transistors and the verification effort required less than two hours on a

MIPS Magnum 3000 workstation. The complete verification process including developing

the specification, deriving the circuit description, and carrying out the symbolic ternary

simulation, took less than a person-week.

3 State Machine Analysis

A second approach to formal hardware verification is state machine analysis. This approach

uses algorithmic techniques to decide whether a finite state machine satisfies a set of user-

specified properties. In this brief overview, we focus on just one particular approach to

state machine analysis called model-checklng. Other approaches to state machine analysis

include those based on language containment tests [23].

We use the example Of a simple handshaking protocol, illustrated by the timing di-

agram in Figure 2, to describe the state-machine analysis approach to formal hardware
verificatiort.

req

ack /
/

Figure 2: Timing diagram for simple handshaking protocol.

This protocol could be implemented either in software or directly in hardware.

'correct' implementation of this protocol must satisfy the following properties:

A

L



3rd NASA Symposium on VLSI Design 1991 8.4.5

"whenever the request signal becomes true, it must remain true

until it is acknowledged"

"every request must eventually be acknowledged"

"whenever the acknowledgement signal becomes true, it must remain true

until the request signal returns to false"

"the request signal will eventually return to false after

the request is acknowledged"

"whenever the request signal is false, it will remain false until

the acknowledgement signal is also false"

"the acknowledgement signal will eventually return to false a_ter

the request signal returns to false"

"once false, the acknowledgement signal will remain false until

there is a request"

"whenever the acknowledgement signal is false,

there will eventually be a request"

These properties can be translated one-by-one into temporal logic. The symbols U, <>,

and _ can be informally read as "until", "eventua/ly', "not" and "implies".

(req ----4(req U ack))

(req _ (¢ack))

(ack ---* (ack U (_req)))

(ack --_ (O(_req)))

((_req) ---* ((_req) U (_ack)))

((~rsq) (¢(~ack)))

((_ack) _ ((_ack) U req))

((_ack) _ (¢req))

A program for automatic state machine analysis would take, as input, a machine-

readable llst of formally specified properties such as the eight properties listed above. The

analyzer program would also take, as input, a machine-readable description of a finite

state machine, for example, a model of a candidate implementation of the handshaking

protocol. The analyzer program would then generate either the answer "yes", meaning

that the state machine does indeed satisfy all of the properties supplied by the user, or

the answer "no', meaning that the machine fails to satisfy at least one of these properties.

When the outcome is "no", the analyzer may also produce helpful information about how

the state machine fails to satisfy a particular property, i.e., a counter-example.

State-machine analysis is bounded by the number of states in the finite state machine.

Early state machine analysis techniques relied on the explicit enumeration of states which,



8,4,6

reportedly, limits the use of these techniques to systems with between l0 s and 106 reach-

_b!e states. Unfortunately, the number of states in a system may grow exponentially with

the number of concurrent components in the system. To deal with this "state explosion

problem", several groups [3,9,16] have investigated ways to represent a state space symbol-

ically rather than explicitly. A popular candidate for the symbolic representation of states

are OBDD's -- mentioned earlier in connection with the symbolic simulation approach.

Using this symbolic approach, it is reported that state machine analysis can be applied in

practice to systems with in excess of 10 20 states [9].

State machine analysis techniques have been app_ed to several commercial designs.

These techniques were used to discover several possible execution sequences leading to

fMlure in a design for the cache consistency protocol of the Encore Gig,max multiprocessor

[24]. Another approach to state machine analysis (based on language containment) has

been used by AT&T in the design of a packet layer controller chip [23].

4 Theorem Proving

A third approach to formal hardware verification, computer-assisted theorem-proving, is

based on the construction of a proof in formal logic. This proof is a formal argument that

a hardware design, based on some model of the primitive components, satisfies a formal

specification of its requirements. Figure 3 shows an example of a formal proof establishing

the correctness of the two-component design shown in Figure 4.

I. ANDCate_IMP (il,i2,outp)

2. 3x. NANDGate (il,i2,x) A NOTGate (x,outp)

3. NANDGate (il,i2,x) A NOTGate (x,outp)

4. NANDGate (il,i2,x)

5. x = _(il A i2)

6. NOTGate (x,outp)

7. outp = _x

8. outp = _(_(iI ^ i2))

9. outp = (il A i2)

_--10. ANDGate (_i,i2',oUtp) ....

II. ANDGate_IMP (il,i2,outp)

ANDGate (ii,i2,outp)

[from above circuit diagram]

[by def.of ANDGa_e_IMP]

[strip off "3x."]

[left conjunct of llne 3]

[by def. of NllDGate]

[right conjunct of line 3]

[by def. of li0TGa_e]

[substitution, line 5 into 7]

[simplify, _-_ = t]

[by def. of ANV6a_e]

Figure 3: Formal proof of correctness for an AND-Gate.

[discharge assumption, line 1]



3rd NASA Symposium on VLSI Design 1991 8.4.7

i2

il
J x outp

Figure 4: Implementation of an AND-gate from an NAND-gate and an inverter.

Both ordinary human reasoning and formal proof can be used to show that a specific

conclusion follows from a certain set of assumptions by accepted laws of reasoning. How-

ever, formal proof is a purely syntactic process. A proof is formally defined as a sequence

of lines (such as the numbered sequence of lines in Figure 3) where each llne follows from

a previous line by rule of inference. There are only a finite number of primitive inference

rules (in fact, usually a very small number of primitive rules). The validity of any particu-

lar line in a proof can be decided by a purely syntactic test based on checking to see if any

one of the primitive inference rules can be used to justify that particular line in the proof.

Unlike ordinary human reasoning, which is notoriously error-prone, formal proof is

extremely rigorous. Indeed, its main advantage is that it can be mechanically checked. The

main disadvantage of formal proof, compared to ordinary human reasoning, is that formal

proof is overwhelmingly tedious. The very simple proof in Figure 3 has just eleven lines,

but a formal proof of correctness for a real design (such as a simple microprocessor) may

involve several million primitive inference steps. Fortunately, there has been considerable

progress made towards the partial automation of formal proof. A very large fraction of

the actual line-by-line inference steps in a formal proof can be generated automatically by

computer-based theorem-prover.

A digital circuit can be "verified" using a theorem-prover by generating a theorem which

states that the formal specification of a design logically aatiJfies a formal specification of

its intended behaviour (i.e. a high level model). The exact meaning of "satisfies" is

stated unambiguously as a mathematical relationship between the two levels of formal

specification. In the very simple example shown in Figure 3, logical implication, =:=_,

is used to express the relationship between the implementation of the AND-gate and its

behavioural specification:

ANDGate_IMP (il,i2,outp) _ ANDGate (il,i2,outp)

The theorem-proving approach to formal hardware verification is a structural approach

in contrast to both symbolic simulation and state-machine analysis which are behavioural

approaches. The latter two approaches, symbolic simulation and state-machine analysis,

both apply verification techniques to a 'flat' design -- they do not require additional

details about the hierarchical structure of the design. On the other hand, theorem-proving

can only be applied 'in the large' to a hierarchically structured design. In a theorem-

proving approach, the design is verified hierarchically. The proof hierarchy is generally a

reflection of the hierarchical structure of the design. For example, the bottom level of this

hierarchical process may involve the formal verification of simple RTL (Register Transfer



8.4,8

Level) components composed from primitives such as CMOS transistors. Each kind of

component only has to be verified once -- in contrast to other approaches which verify

every instance of that particular component. At higher levels in the verification hierarchy,

each instance of a particular component uses the single verification result obtained from a

lower level.

The direct re-use of a verification result for multiple identical instances of a partic-

ular component is a very simple form of how a single verification result can be re-used.

Theorem-proving approaches also allow generic specifications to be formally verified where

a specification is parameterized is by scalar values (e.g., the number of bits in a RTL com-

ponent) or even by data types and operations [21]. A--single generic verification result can

be instantiated for different parameter values; for example, the generic specification of an

_-bit multiplier can be instantiated for different values of n, e.g., a 16-bit multiplier, a
32-bit multiplier.

The theorem-proving approach relies heavily upon (and benefits greatly from) a number

9f mathematicM tools. This includes, as w_tl_ symbolic simulation, the ability to represent

data symbolically. Mathematical induction is also critical for scaling with the increasingly
complexity of circuit designs.

A distinct advantage of the theorem-proving approach to formal hardware verification is

the ability to verify digital systems with respect to higher algebraic levels. For example, the

correctness of arithmetic hardware can be stated directly in terms Of arithmetic Operations

on natural numbers rather than Boolean operations on B_it-vectors. This is often referred

to as data abstraction -- an in ustrative example of this technique is given by Chin [12] in

verifying arithmetic hardware for signal processing applications.- Other kinds of abstraction

include temporal abstraction which is a technique for relating computational behaviour _t

increasingly abstract time scales.

Among the best known interactive theorem-provers are the Boyer-Moore Theorem

Prover [4] and the Cambridge HOL System [18,19]. The Boyer-Moore Theorem Prover

has been used by-researchers at Computational Logic Inc. to develop an multi-level proof

of correctness for a complete computer system including both hardware and software levels

[1,2]. The Cambridge HOL System has been used by researchers at Cambridge Univer-

s.ity to verify aspects of the commercially-available Viper microprocessor designed by the

British Ministry of Defence for safety-critical applications [6,13,14,15].

r

5 Summary and Future Directions

This paper has briefly described three main approaches to formal hardware verification:

symbolic simulation, state-machine analysis and theorem-proving. There have already

been some trial applications of these verification techniques to real commercial designs (as

mentioned earlier) and there is evidence of increasing industrial interest in these techniques.

Many research efforts in this area are now focussed on the issue of integrating formal

verification techniques with conventional CAD. For example, researchers at Cambridge

University are investigating the use of conventional HDL's (Hardware Description Lan-



3rd NASA Symposium on VLSI Design 1991 8.4.9

guages) such as Ella and VHDL as specification languages for theorem-proving techniques

[5]. Another example is work that investigates links between formally verified hardware

specifications and conventional CAD tools such as silicon compilers [22].

It is unlikely that any one of the three verification approaches described in this paper

offers, by itself, a "complete" approach to verifying digital hardware. However, we believe

that a "complete" approach may be achieved by some combination of the three approaches

described here. We are currently developing a hybrid approach that based on a combi-

nation of symbolic simulation (using the COSMOS system) and theorem-proving (using

the Cambridge HOL system). The objective of our research is a hybrid formal verification

methodology (and supporting tools) which combines the complementary advantages of

theorem-proving and symbolic simulation. This methodology would allow a very abstract

specification of a digital system (specified with the full expressive power of higher-order

logic) to be verified with respect to a switch-level model of a CMOS digital circuit. Initial

progress on the development of a "mathematical interface" for this hybrid approach is

reported in [26].

Acknowledgements

This research is supported by Operating Grants from the Natural Science and Engineering

Research Council of Canada (NSERC).

References

[1]

[2]

[3]

W. R. Bevier, W. A. Hunt, Jr., and W. D. Young, Towards Verified Execution Environments,

Proceedings of the 1987 IEEE Symposium on Security and Privacy, 27-29 April 1987, Oakland,

California Computer Society Press, Washington, D.C., 1987 pp. 106-115. Also Report No. 5,

Computational Logic, Inc., Austin, Texas, February 1987.

W. Bevier, W. Hunt, J Moore, and W. Young, An Approach to Systems Verification, Journal

of Automated Reasoning, Vol. 5, No. 4, November 1989. Also Report No. 41, Computational

Logic, Inc., Austin, Texas, April 1989.

S. Bose and A. Fisher, Automatic Verification of Synchronous Circuits using Symbolic Logic

Simulation and Temporal Logic, Proceedings of the IMEC-IFIP International Workshop on

Applied Formal Methods for Correct VLSI Designs, Houthalen, Belgium, 1989.

[4]

[5]

[6]

R. S. Boyer and J S. Moore, A Computational Logic, Academic Press, 1979.

R. Boulton, M. Gordon, J. Herbert, and J. Van Tassel, The HOL Verification of ELLA Designs,

Proceedings of the A CM I991 International Workshop on Formal Methods in VI, SI Design, P.

Subrahmanyam, ed., Miami, Florida, 9-11 January 1991

B. Brock and W. A. Hunt, Jr., Report on the Formal Specification and Partial Verification of

the VIPER Microprocessor, Report No. 46, Computational Logic, Inc., Austin, Texas, January
1990.



8.4.10

[7] R.E. Bryant, Symbolic Verification of MOS Circuits. 1985 Chapel Hill Conference on VLSI,

Fuchs, H., Ed. Computer Science Press, Rockville, MD, 1985, pp. 419-438.

[8] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions

on Computers, Vol. C-35, No. 8, December 1986, pp. 677-691.

[9] J. Burch, E. c]ari(e, and K. McM]llan, Symbolic Model Checking: 10 _° States and Beyond.

Manuscript, 1990.

[i0] R.E. Bryant and C-J. Seger, Formal Verification of Digital Circuits Using Symbolic Ternary

System Models, Computer-Aided Verification '90, eds. E.M. Clarke, R.P. Kurshan, American
Mathematical

[11] W.C. Carter, W:H. Joyner, Jr., and D. Brffaad,:Symbolic Simulation for correct Machine

Design, i6th ACMfIEEE Design Automation Conference, 1979, pp. 280-286.

[i2] S-K. Chinl Synthesis of Arithmetic Hardware Using Hardware Metafunctions, IfEf Trans.

CAD, Vol. 9, No. 8, August i990, pp. 793-803.

[13] Avra Cohn, A Proof of Correctness of the Viper Microprocessor: The First Level, VLSI

Specification, Verification and Synthesis, G. Birtwlstie and P. Subrahmanyam, eds., Kluwer

Academic Publishers, Boston, 1988, pp. 27-71. Also Report No. 104, Computer Laboratory,

Cambridge University, January 19_87.

[14] Avra Colin, Correctness Properties of the Viper Block Model: The Second Level, Current

Trends in Hardware Verification and Automated Theorem Proving, G. Bixtwistle and P. Sub-

rahrnanyam, eds., Springer-Veriag, 1989, pp. 1-91. Also Report No. 134, Computer Laboratory,
Cambridge University, May 1988.

[15] Avra Colin, The Notion of Proof in Hardware Verification, Journal of Automated Reasoning,

Vol. 5, May 1989, PP- _127-:!39. : ..............
_: :: :2 :Tz :: L : L _ ::2L: 2 :

[16] O. Coudert, C: Berthet, and-j. _C:Madre. Verification of Synchronous Sequential Machines

basd on Symbolic Execution, Proceedings of the Workshop on Automatic Verification Methods

for Finite State Systems, Grenoble, France, 1989.

[17] M. J. C. Gordon, Why Higher-Order Logic is a Good Formallsrn for Specifying and Verifyiiig

Hardware, Formal Aspects of VLSI Design, Proceedings of the 1985 Edinburgh Conference on

VLSI, G. Milne and P. Subrahmanyam, eds., North-Holland, 1986, pp. 153-177.

[18] M.J.C. Gord0n::Mechanlzifig Programming Logics in Higher Order Loglc, Current Trends in

Hardware Verification and Automated Theorem Proving, G. Birtwistle and P. Subrahrnanyam,

eds., Springer-Veriag, i989, pp. 387-439. Also Report No. 145, Computer Laboratory, Cam-
bridge University, September i988.

[i9] M:J:C' Gordon et al:, Th_HSL System Description, CambrMge Research Centre, SRI Inter-

national, Suite 23, Miller's Yard, Cambridge CB2 1RQ, England.

[20] Warren A. Hunt, FM850I, A Verified Microprocessor, Ph.D. Thesis, Report No. 47, Institute

for Computing Science, University of Texas, Austin, December 1985.

[21] Jeffrey J. Joyce, Generic Specification of Digital tiardware, Proceedings of Workshop on Digital

Circuit Correctness, M. Sheeran and G. Jones, eds., September 1990, Oxford.



3rd NASA Symposium on VLSI Design 1991 8.4.11

[22] J. Joyce, E. Liu, J. Rushby, N. Shankar, R. Suaya, and F. von Henke, From Formal Verifica-
tion to Silicon Compilation, Proceedings of COMPCON 91, San Francisco, California, 26-27

February 1991.

[23] R. Kurshan, Automaton (State-Machine)-Based Analysis, Tutorial on Formal Verification of

Hardware, DAC'91, 21 June 1991, San Francisco.

[24] K. McMillan and J. Schwalbe, Formal Verification of the Gigamax Cache Consistency Protocol,

manuscript, 1990.

[25] P. G. Neuman, The Computer-Related Risk of the Year: Weak Links and Correlated Events,

Proceedings of COMPASS '91, Washington, D.C., 24-27 June 1991.

[26] C.-J. Seger and J. J. Joyce, A Two-Level Formal Verification Methodology using HOL and
COSMOS, Proceedings of the Third Workshop on Computer Aided Verification, K. Laxsen and

A. Skou, eds., Aalborg, Denmark, 1-4 July 1991. pp. 380-391.



wmDI



3rd NASA Symposium on VLSI Design 1991

High Accuracy Switched-Current Circuits Using an

Improved Dynamic Mirror

G. Zweigle and T. Fiez

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164

Abstract - The swltched-current technique_ a recently developed circuit ap-

proach to analog signal processlng_ has emerged as an alternative/compliment

to the well established switched-capacitor circuit technique. High speed switched-

current circuits offer potential cost and power savings over slower switched-

capacitor circuits. Accuracy improvements are a primary concern at this stage

in the development of the switched-current technique. Use of the dynamic cur-

rent mirror has produced circuits that are insensitive to transistor matching

errors [1]. The dynamic current mirror has been limited by other sources of

error including clock-feedthrough and voltage transient errors. In this paper

we present an improved swltched-current building block using the dynamic

current mirror. Utilizing current feedback the errors due to current imbal-

ance in the dynamic current mirror are reduced. Simulations indicate that

this feedback can reduce total harmonic distortion by as much as 9dB. Addi-

tionally_ we have developed a clock-feedthrough reduction scheme for which

simulations reveal a potential 10dB total harmonic distortion improvement.

The clock-feedthrough reduction scheme also significantly reduces offset er-

rors and allows for cancellation with a constant current source. Experimental

results confirm the simulated improvements.

1 Introduction

The switched-current (SI) sampled-data signal processing technique is becoming a viable

alternative to the switched-capacitor (SC) technique. Unlike SC circuits, which require

additional processing steps to fabricate precision linear capacitors, SI circuits can be inte-

grated in a standard digital CMOS process. In addition, SI circuits can operate with low

power supply voltages, they can operate at high speeds, and they are very area efficient.

The drawback of SI circuits at this time is their limited accuracy. This problem must

be overcome in order for switched-current circuits to gain the wide acceptance switched-

capacitor circuits have attained.:In this paper, an SI=circuit is presented that significantly

improves the accuracy of the current-mode system.

_This research was supported in part by a grant from the National Science Foundation Center for the

Design of Analog/Digital Integrated Circuits (CDADIC) at Washington State University, University of Wash-

ington, and Oregon State University



9.1.2

()
iI

M,jmI
Clk

KI

K ( il + i2) -

K (W_) I _ . .

Figure 1: Switched-current track-and-hold circuit.

Swltched-Current Circuit Operation

2.1 Current Track-and-Hold ................

The current track-and-hold (T/H) is a basic building block of switched-current circuits,

Fig. 1. Transistors M1 and M2 are biased in saturation by the current sources, indicated

as I, and the track-and-hold operation is controlled by switch transistor M3. When the

clock is high, the input current is mirrored to the output. The parasitic gate capacitance

of transistor M2 stores a voltage corresponding to the value of the input current. When

the clock is low and transistor M3 is turned off, the drain current of M2 is held at a value

eorresponc_l_gto the Voltage stored-on thee gate of M2. -

T-lie eurre-nt (rack-and-lao]d perfo-rms the foursignal processing operaii0ns 0finversion,

Summation, scaling,and=deiay. Consider init_aliy that the dOCk is]i_gh and _: ga_;es 0i

M1 and M2 are shortedl When a slgna] i]. is inpu_ to the diode connected transistor M1,

it is mirrored to transistor M2. The drain current of M2 is i + il. The output current is

-i_. This stage inverts the current._output Current is asum of two input currents by

simply connecting wires. Scaled current output is obtained by scaling the aspect ratio of

M2 to M1. Finally; s_gnai delay is contro_ed by switching transistor M3 on and off

By using these basic signal processing operations, current track-and-hold circuits can

be combined to perform more complicated operations. One of these, the integrator, is

realized by cascading two current track-and-holds with feedback as shown in Figure 2.

R

it

2_=



3rd NASA Symposium on VEST_ Design 1091

 IC> I

VDD
-'1-"

1 OUt

Figure 2: A switched-current differential integrator.

9.1.3

The transfer function of this circuit is

(K(ilz -1 -- i2z-o. )
i_,t(z)= (1_ z_1 ) (1)

The non-inverting integrator input is at the input of the first T/H and the inverting

integrator input is at the input of the second T/H. The switched-current integrator has

been shown to be directly analogous to the switched-capacitor integrator [2]. Note that,

as with the SC integrator, the two switches of the SI integrator are controlled by two

phase non-overlapping clocks. Additionally, the integrator coefficient K is determined by

the aspect ratio of transistor M5 to transistor M3. In the SC integrator a capacitor ratio

determines this factor. The reliance of this switched-current circuit on transistor matching

has contributed to its limited accuracy.

2.2 Dynamic Current Mirror

The dynamic current mirror eliminates matching errors present in simple current track-

and-holds by mirroring current in time rather than space, Figure 3. Operation of the

dynamic mirror is controlled by switches MC1, MC2, and MC3. These switches require a

two phase non-overlapping clock, similar to the current track-and-hold integrator. It has

been shown that an integrator composed of the dynamic mirror cell does

not require any more clocks that the SI integrator presented previously [3]. Transistor

M1 is biased by the DC current source I. Initially the switches MC1 and MC2 are closed.

The signal current is read into the diode connected transistor M1, producing a voltage on

its gate. This voltage is proportional to the square root of the input current for saturated

operation. The current is then read out by opening switches MC1 and MC2 while switch

MC3 is closed. The stored voltage produces an output current that is an inverted replica

of the input current. The dynamic mirror differs from the simple track-and-hold by using

switches to time multiplex one transistor, resulting in a float-and-hold operation. Unlike

the simple current mirror track-and-hold, where the switch transistor passes nearly zero

current, the controlling switches MC2 and MC3 of the dynamic mirror must pass the signal



9.1.4

i.
in

Clk

3..
MC2

VDD

i()_
Clk

_L
---41-----

MC3 i
OUt

i

+

VSS

MCI

- J"- ._'-s
-r

! --

!

Figure 3: Dynamic current mirror float-and-hold ceU. - ......

current. Also, since the same transistor is used to both mirror in and out t_ signal current,

the method of scaling currents by scaling transistor aspect ratios is not possible using the

dynamic mirror. To perform signal scaling additional dynamic mirrors are multiplexed in

time [4]. - - : .........

3 Dynamic Current Mirror Error Sources

Although SI circuits have been shown to be a viable signal processing circuit technique,

the poor accuracy limits system performance. Sources of this inaccuracy for the dynamic
= t tT, _ , -- -= - .=

mlrror are i_mte output impedance effects, clock-feedthrough effects, and voltage spxkes.

While these effects can be reduced by using large current mirror devices, this solution is

not optimum because increasing device size increases area requirements and reduces speed

capabilities. The finite output impedance of a dynamic current mirror resets in current

division between stages. This division of the signal current becomes an AC gain error with

magnitude

,',i : (z,,/zo,,,i. (2)

=

=

,i!

Ideally the output impedance of the dynamic mirror would be infinite and the input

impedance zero, Because these con_ions are not met in real imp_Iementations, errors are

introduced in the output current. The output impedance of a dynamic current mirror

can be _ncreased with the use of a cascade circuit. Because of its extremeiy high output

impedance and special feedback properties the regulated gate cascade [5] was employed



3rd NASA Symposium on VLSI Design 1991 9.1.5

VDD

( I

Figure 4: Current mismatch in the dynamic current mirror at the switching interval.

for reducing the AC gain errors. Clock-feedthrough effects in switched-current circuits

are more severe than in switched-capacitor circuits [6]. This is because the parasitic gate

capacitances of SI circuits are smaller than the linear capacitors implemented in SC circuits.

By using larger capacitors to hold the signal, SC circuits reduce the effect of small clock-

feedthrough charges. In SI circuits clock-feedthrough results in offset errors and increases

total harmonic distortion. Several methods of reducing this injected charge in SI circuits

have been studied to date. These include capacitive feedback [7], the use of dummy

switches [8], current difference cells [9], and an adaptive clock [7,9]. In this paper a scheme is

presented for reducing clock-feedthrough in the dynamic mirror with an improved adaptive

clock. Finally, voltage spike errors are introduced in the dynamic mirror by the operation

of the two phase nonoverlapping clocks. During the switching of transistors MC2 and

MC3 there will be a nonzero interval of time when all of the switches are in the OFF state.

During this time period the data holding transistor M1 and the current source will be

attempting to draw two different currents. This can be seen in Figure 4. Transistor M1

will have a gate-source voltage set by the input current which will give a drain current of

I i. The current mirror will be delivering current I. As a result, the voltage at the drain

of transistor M1 will have to move to counter the current imbalance. For negative input

currents, the voltage will increase in an attempt to shut off the current source and make

transistor M1 draw more current. For positive input currents the voltage will decrease,

attempting to draw more current from the current source and less from transistor M1.

There are two paths that these voltage transitions can couple through to the data

holding node. One is through switch transistor MC1 as it turns off with switch transistor



9.1.6

MC2. The other is through the drain-gate capacitance of transistor M1. Although it may

seem that a cascade could be used to buffer the drain of transistor M1 from the spikes,

this circuit will only be useful when functioning as designed. For positive input currents

negative spikes will cause the cascade to leave its proper operating point. Subsequent

to this, the drain of M1 will no longer be protected and the spike will couple through

Cg.1. The resulting error from the voltage spikes is signal dependent in both magnitude

and polarity, difficult to predict, and sometimes worse than switch charge injection effects.

The voltage spike error must be eliminated before clock-feedthrough cancellation schemes
can be effective.

4 Voltage Spike Error Reduction

Two solutions to reducing voltage spike errors have been developed. The first involves

modifying the clock phasing of the dynamic mirror. By turning switch transistor MC1 off

slightly before turning switch transistor MC2 off, the path of the voltage spike through

transistor MC1 is eliminated. The new clocking scheme presented here does not add

another clock phase to the circuit, only a delay is needed. Transients occurring when the

transistor goes from the hold mode to the output float mode are irre!eyant because anew

current value w_ be read into the diode connected transistor at this time. The deia_

only needs-to_be-as-iong as the turn'off tirn-e_0f-transistor MC1. it can be implemented

on chip with an even number of cascaded3nverters. The other solution to voltage spike

errors must eliminate the Voltage spike from coupling through the drain-gate capacitance

of transistor M1. This is accomplished by using current feedback around a regulated gate

cascade dynamic current mirror, Fig. 5. The regulated gate cascade is used to increase

the -6utp_t imp ed/mce of the dynamic mirror and-the current feedbac-k- is used to keep ih¢

cascade in its proper operating region for positive input currents. The circuit operates

as follows. Transistor M3 senses variations in the drain-source voltage--of_ransistorML

Since a constant current biases M3, these variations wl_ffbe amplified by the loop gain_ of

transistors M3 and follower M2. Differences between the drain-source voltage of transistor

M1 and the- gate voltage of transistor M3 required to supply constant current-j-_-be

amplified, stabilizing the drain voltage of M1. When the current in the current source,

M6, is smaller than the current in the drain of transistor M2, the voltage on the drain of

transistor M2 decreases because of the current mismatch. This increases the gate voltage

of transistor M4 due to the voltage feedback of transistor M3. Transistor M4 subsequently

sources additional current through current mirror transistors M5 and M6 to cancel the

current imbalance. When_ the current imbalance is corrected, the voltage on the gate Of

transistor M4 returns to its original DC value. The current feedback, in the meantime,

keeps the voltage on-(he drkin of transistor 1VI2 more stable Whichkeeps the Cascade-in its

t_oper operating region. With the CascadeTunctioning throughout the switching interval,

the drain of transistor M1 was buffered from the transients and the voltage sto_re_t 0n _its

gate remained unaffected. ----_.....

In order ;o :verifythe improvement in- circuit performance-with- ihe current feedback



3rd NASA Symposium on VLSI Design 1991 9.1.7

w

Clk

_.I_

i°u_--_ Mc2MC3 )

r

iin T
Clk

Clk e-- MC1

M I

I
I

J

()

Figure 5: Regulated gate cascade with current feedback.

scheme, simulations were performed for a dynamic current mirror biased with 100uA using

a 5kHz sinusodial 50uA input signal. The circuit was clocked at 100kHz. By eliminating

errors due to voltage spiking, the harmonic distortion was improved by almost 9dB over

the cascade without current feedback.

5 Clock-Feedthrough Error Reduction

Clock-feedthrough has been extensively analyzed in the literature [8,10]. Analysis shows

that clock-feedthrough is dependent on the aspect ratio of the switch transistor with respect

to the data holding transistor, the clock slope, and the magnitude of the input signal.

The signal dependence of clock-feedthrough leads to difficulties in predicting the error,

a necessary condition for cancellation. The adaptive clock is a technique for reducing

clock-feedthrough through control of the ON conductance of the switch. This control

simultaneously reduces the clock swing on the switch and causes the gate-source voltage

of the switch to remain constant for varying input signals. With a constant gate-source

voltage, the charge injected by the switch becomes constant. This results in the possibility

of canceling the error current with a constant current source. In order to use such a

system, the nonsaturated region of operation must be used for the data holding transistor.

For saturated operation nonlinear transformations between voltage and current result in

harmonic distortion even if a constant clock-feedthrough voltage can be generated. For



9.1.8

the nonsaturated region of operation the transformations are hnear. A simplified equation

for the drain current of a transistor operating in the nonsaturated region is given in Eqn.

3. Added to the gate-source voltage is the constant clock-feedthrough voltage, V_t.

id. = _V,_.(Vg, + V_! - VT - 1/2Vdo. (3)

Keeping only the clock-feedthrough term, it can be seen that the error output current

is given simply by,

icl = _Vd, V_l. (4)

The clock-feedthrough voltage contributes a DC oi_set. If constant, no harmonics are

generated. A new adaptive clock scheme, applied to the dynamic mirror, is shown in

Figure 6. When the clock signal is high, the inverter output is low and the gate-source

voltage of switch MCI is set by the gate-source voltage of transistor M2, regardless of the

voltage at the source of MCI. When the clock signal goes low, the inverter turns on which

shorts the gate and source of MC1 together. This turns off the transistor and the input

signal is held on the gate of M1 By using this control, the gate-source voltage of the

switch when on is always equal to the constant gate-source voltage of transistor M2. In

order to cancel the constant clock-feedthrough generated by the adaptive clock a constant

current that is equivalent to=the error current needs to be generated. It has been sh0wB

that the integrator circuit p_esented earlier will perform such a task, [3]. The adaptive

clock is also useful as a clock swing iimlter. Simulations show that for a data holding

transistor (M1 in Figure 6) width to length ratio of 7/5 , which gives a transistor area of

35 x 10 -x2 square meters, the use of an adaptive clock without cancellation reduces total

harmonic distortion by 10 dB. The DC offset is reduced by an order of magnitude. As

the data holding transistor size is increased, the adaptive clock's effect on total harmonic

distortion decreases due to an increase in the data holding capacitance. This limits the

influence of clock swing reduction. However, even for larger transistor sizes, 28/20, the

use of an adaptive clock without cancellation continues to improve the DC offset and for

all device sizes the error is kept constant. The adaptive clock circuit of Figure 6 was

fabricated fl_rough MOSiS in a two micron CMOS p'well process. The dyn_ic mirror

used the regulated gate current feedback circuit presented earlier as a cascade. Initial

experiment_ results verify the improvements indicated by Simulations. For a large data

holding transistor size of 28/20 the DC offset error was reduced by 40

6 Concludon

The dynamic current mirror is a useful circuit to reduce reliance on transistor matching.

in order to effectively use the dynamic current mirror, consideration has to be given to the

effects of transients when switching currents. Clock delays and current feedback were used

to reduce distortion due to voltage spikes that occur during intervals of current mismatch.

Clock-feedthrough is a source of distortion that effects all methods of sampled-data signal



3rd NASA Symposium on VLSI Design 1991 9.1.9

-- C1 _ - iin

VSS

Figure 6: Adaptive clock applied to the dynamic mirror.

processing. For the dynamic mirror an adaptive clock was developed that was shown to

both reduce and make constant charge injected by the switch.

References

[1] D. Vallancourt, Y.P. Tsividis, and S.3. Daubert, "Current-copier cells," Electronic

Letters, vol. 24, pp. 1560-1562, Dec. 1988.

[2] T. S. Fiez and D. 3. AUstot, "CMOS switched-current ladder filters," IEEE J. Solid-

State Circuits, vol. 25, pp. 1360-1367, Dec. 1990.

[3] J. B. Hughes, I. C. Macbeth, D. M. Pattullo, "Second generation switched-current

signal processing," Proc. of IEEE Intl. Symp. Circuits and Syst., May 1990, pp.2805-

2808.

[4] D. G. Nairn and C. A. T. Salama, "A ratio-independent algorithmic analog-to- digital

converter combining current-mode and dynamic techniques," IEEE Trans. Circuits

and Syst., vol. 37, pp. 319-325, March 1990.

[5] E. Sachinger and W. Guggenbuhl, "A high-swing, high-impedance MOS cascade cir-

cuit," IEEE J. Solid-State Circuits, vol. 25, pp. 289-297, Feb. 1990.



9.1.10

[6]

[7]

Is]

[9]

[lO]

T. S. Fiez, G. Liang, and D. J. Allstot, "Switched-current circuit design issues," IEEE

J. Solld-State Circuits, vo!. 26, pp. 192-202, March 1991.

"Analog IC design: the current-mode approach," edited by C. Toumazou, F.J Lidgey

and D.G. Haigh, Peter Peregrinus Ltd, 1990.

C. Eighenberger and W. Guggenbuhl, "On charge injection in analog MOS switches

and dummy switch compensation techniques," IEEE Trans. Circuits and Syst., vol.
37, pp. 256:264] Feb. 1990.

E. A. Vittoz and G. Wegmann, "Analysis and improvemenfs of accurate dyna_c

current mirrors," IEEE J. Solid-State Circuits, vol. 25, pp. 699-706, June 1990.

Je-Hurn Shieh, M. Patil, and B. J. Sheu, "Measurement and analysis of charge injec-

tion in MOS analog switches," IEEE J. Sohd-State Circuits, vol. SC-22, pp. 277-281,
April 1987. :_

s

£



3rd NASA Symposium on VLSI Design 1991

N94-18369
9.2.1

A Tunable CMOS Constant Current Source

D. Thelen

NASA Space Engineering Research Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract- A constant current source has been designed which makes use of

on chip electrically erasable memory to adjust the magnitude and tempera-

ture coefficient of the output current. The current source includes a voltage

reference based on the difference between enhancement and depletion transis-

tor threshold voltages. Accuracy is ± 3_ over the full range of power supply_

process variations_ and temperature using eight bits for tuning.

1 Introduction

The lack of precision components in CMOS integrated circuits has traditionally forced

design engineers to depend upon external components and matching of on chip components

to realize precision functions. For example, switched capacitor filters [1] realize precise

transfer functions only when supplied with an accurate clock frequency, which is usually

generated by an external crystal oscillator. The locations of poles and zeros are relative

to the clock frequency, and are determined by accurate on chip capacitor ratios. Switched

current [2], Wransconductor C [3], and MOSFET C [4] filters also depend on an external

frequency reference, and matching of transistors to realize their transfer functions. In

cases where external components are unacceptable, some kind of tuning of the non-ideal

components must be accomplished to realize precision functions. Laser trimming is one

method which works well, but requires expensive equipment, and a special process. Blowing

poly-silicon fuses is inexpensive, but sometimes unreliable, and some types of tuning are

difficult to achieve with fuse blowing. Neither laser trimming, nor fuse blowing is reversible,

a distinct hindrance if a tuning operation requires more than one iteration. If the circuit to

be tuned is fabricated in a process which includes nonvolatile electrically erasable memory,

floating gate transistors can be programmed to trim analog performance. Two different

methods may be used to employ the floating gate transistor to tune an analog circuit. First,

an analog voltage can be stored on the floating gate to change the current or resistance

from source to drain [5,6]. The current or resistance will be afunction of temperature, and

possibly power supply voltage. The second method is to use nonvolatile digital memory to

select how much resistance or capacitance is connected to a node, or which tap of a resistor

will be connected in a circuit. The second method has the advantage of insensitivity to

temperature and power supply voltage, assuming the resistance of the analog switch is low,

while it has the disadvantage of requiring more circuitry to do the tuning. In this paper,

a circuit is described which uses the later method to tune the magnitude and temperature
coefficient of a current source.



9.2.2

2 Application

The tunable current source described in this paper, is a part of a larger circuit which emits

a constant frequency square wave, independent of temperature, processing, and power

supply voltage. The circuit consists of a voltage controlled oscillator (VCO), a frequency

to current converter, and an integrator connected in a feedback loop as shown in figure 1.

Iref

VCO

Figure 1: Constant frequency circuit.

The control voltage for the VCO is used in other cells on the chip. The frequency to

current converter is based on a switched capacitor network whose average current is given

by equation 1 [7]:
ia , =],y,c (1)

where jr is frequency, V is the voltage across the switched capacitor network, and C is

the value of the switched capacitor. At a fixed temperature, both V, and C are constants

in this circuit, which makes the average current proportional to frequency. The difference

between the constant current and the switched capacitor current _s integrated, and used

to contrOl the VCO. The high gain of the feedback loop ensures that the VCO emits a

frequency which causes the current in the switched capacitor network to exactly cancel the

constant current. Since the capacitor has a non-zero temperature coefficient, the constant

current source must have a temperature coefficient which cancels that 0f the capacitor. The

current source must also compensate for variations in reference voltage and capacitance

due to processing.



3rd NASA Symposium on VLSI Design 1991 9.2.3

3 Voltage Reference

In this circuit, a constant current will be derived from a constant voltage as shown in

figure 2.

Vref
Iout

E_.

m __
m

Figure 2: Voltage to current converter.

The performance of the current source will only be as good as the performance of

the voltage reference, so the voltage reference must have good rejection of power supply

variations and temperature. Three possibilities come to mind to generate a reference

voltage on a chip. A power supply voltage divider is the most simple reference available, but

since the specification for the current is tighter than the variation of the power supply, the

voltage divider can not be used to generate the reference voltage. The bandgap reference [8]

is probably the most accurate voltage reference which can be built on a CMOS chip, but it

can not be used on this chip because substrate currents, caused by the bipolar transistors,

are unacceptable. A threshold voltage reference [9] is based on the difference between the

threshold voltages of depletion and an enhancement MOSFET's.

V,_I _ Vt_(1 -alT)- Vtd(1 -a2T) (2)

Where Vt_ is the n-channel enhancement threshold voltage, Vtd is the n-channel depletion

threshold voltage, al is the temperature coefficient of Vte, a2 is the temperature coefficient

of Vta, and T is temperature. Since al, and a2 are approximately equal, V_/ has a very

small temperature coefficient.

The mobility temperature coefficient can be ignored by making the width to length

ratio of the transistors large for the amount of current flowing through them, and by

making the width to length ratio_ and drain to source current equal for both transistors.

This makes the gate to source voltage mostly Vt, and the gate to source voltage above

Vt is approximately equal for both transistors. The threshold voltage of both transistors

is also dependent on the source to bulk voltage. Depletion and enhancement transistors

have approximately the same body effect factor, so if the transistors have the same source

to bulk voltage, the body effect will change both threshold voltages equally. This gets

canceled by the subtraction as shown in equation 2. One circuit which implements the



9,2.4

reference with equal current, a_d source to bulk voltage in both transistors
figure 3.

is shown in

Vbias

' Vref

Figure 3: Enhancement-Depletion voltage reference.

Unfortunately, the reference voltage is larger than the power supply in some cases,

rendering the circuit useless for this apphcation. To rectify this situation, the circuit in

figure 4 was designed which sums half of the two threshold voltages. The body effect i_s

no longer equal for the two transistor, so the output voltage will be sensitive to the bulk

voltage. Equal current flows through the two transistors, and the width to length ratios

are large compared to the current, so mobility temperature coe_cients are negligible,

4 Voltage to Current Conversion

Voltage to current conversion will be accomplished by maintaining the reference voltage

across a resistor using an opamp as shown in figure 2, This circuit will be independent of

temperature only if the resistor and the voltage reference have a zero temperature coem-

cient. This is far from true on silicon, where the best resistor available has a temperature

coefficient of approximately 0.1%/°C. in addition to the temperature coemcient, the value

of the resistor and voltage reference are dependent on processing. To tune the magnitude

of the resistor to account for processing, taps can be programmed as shown in figure 5.

The resistance of the switchs must be made small compared to the hnear resistor.

In order to produce a current with a small temperature eoemcient, the voltage across



3rd NASA Symposium on VLSI Design 1991 §.2.5

K

Vref

Figure 4: Enhancement-Depletion reference for low power supply voltage.

w
I

lout

Figure 5: Tuning Scheme for the Magnitude of Io,,t.



9.2.6

the resistor must have a positive temperature coefficient to cancel the positive tempera-

ture coefficient of the resistor. One way to generate a voltage with a positive temperature

coefficient is to subtract a voltage with a negative temperature coefficient from a con-

stant voltage. The threshold voltage of an enhancement transistor has a linear negative

temperature coefficient suitable for subtraction from V,_I. To make the threshold voltage

independent of power supply voltages, a p-channel transistor can be used with its source

connected to the bulk to get rid of the body effect.

temperature coefficient cancellation.

Vref

The circuit in figure 6 shows this

Iout

Vtp

+

I Vres

m

Figure 6: Temperature Coefficient cancellation for Io_t.

To tune the temperature coefficient of the current to zero, the magnitude of the refer-

ence voltage can be adjusted. This makes the negative temperature coefficient voltage a

larger or smaller portion of the reference voltage, which adjusts the overall temperature

coefficient. This temperature coefficient cancellation can be expressed as follows:

I_t .._ K1V'_I - Vtp(1 - aiT) (3)
K2R,._/(1 + a2T)

where Vtp is the threshold voltage of a p-channel enhancement transistor, al is the temper-

ature coefficient of Vtp, and _2 is the temperature coefficient of R,._/. K1 is the fraction of

the reference voltage chosen by the first tapped resistor, K2 is the portion of/_! chosen

by the second tapped resistor. K1 and K2 range from zero to one. If we define two new

terms:

E,,,,e = Ii'xV,_f - Ep (4)

and



3rd NASA Symposium on VLSI Design 1991 9.2.7

then equation 3 can be rewritten as:

I_ .._ Vt_,,_ (1 4- fiT) (6)
K2R,_ I (1 4- a2T)

When/3 equals a2,/out has a zero temperature coefficient.

The key to all this temperature coefficient cancellation is that all the components have

only first order temperature coefficients. Measurements from silicon indicate that poly-

silicon resistors have linear temperature coefficients, as well as the smallest temperature

coefficient of any resistor available on chip. The poly-silicon resistor also has no voltage

coefficient, since there is no reverse bias junction which could change the dimension of

the resistor. The threshold voltages of n-channel and p-channel transistors have negligible

higher order temperature coefficient terms. Threshold voltages of n-channel enhancement

and depletion transistors were found to track well over temperature. A simplified schematic

of the entire circuit is presented in figure 7.

5 Tuning Strategy

Equation 3 shows that K1 adjusts the magnitude of the current as well as the temperature

coefficient, so K1 must be adjusted first, then/(2 can calibrate the current to the desired

value. Tuning the temperature coefficient of this circuit in a production test environment

without non-volatile memory would be a logistic nightmare. Somehow the result of the

first temperature measurement would have to be stored with a serial number for each die

for use during the second temperature test. No such serial numbers are available for each

die, and moreover, testing at two temperatures is usually done before and after packaging;

one temperature during wafer sort, and the other temperature during final assembly test.

Fortunately, with non-volatile memory the results of the first temperature measurement

can be written to memory then simply read during the second temperature test. After

the temperature coefficient is tuned, the magnitude can be adjusted in one step, since the

magnitude adjust (K2) should have almost no effect on the overall temperature coefficient.

6 Results

The circuit was simulated with various extremes of power supply voltage, processing,

mismatch of threshold voltage temperature coefficients, and temperature, ttSpice [10]

simulations show the error to be less than 3%. Error can be attributed to non-zero step

size in tuning, and finite power supply rejection, especially to the substrate power supply.

The chip is presently in layout.



Vref

Iout

K1

Figure 7: Simplified Schematic.

=



3rd NASA Symposium on VLSI Design 1991 9.2.9

7 Conclusion

Tuning analog circuits with nonvolatile memory provides a very powerful and linear way

to overcome the wide tolerances intrinsic in semiconductor processing. The disadvantage

of using digital memory to tune analog circuits as opposed to using the floating gate

transistors in an analog fashion is the increased number of transistors necessary to do the

tuning. The advantage is that the nonlinear characteristics of programming the floating

gate transistors can be ignored.

References

[1]

[2]

[3]

[4]

[5]

Bang-Sup Song, "A 10.7-MHz Switched-Capacitor Bandpass Filter," IEEE J. of Solid-

State Circuits, Vol. SC-24, pp. 320-324, April, 1989.

T. Fiez, G. Liang, D. AUstot, "Switched-Current Circuit Design Issues," IEEE J. of

Solid-State Circuits, Vol. SC-26, pp. 192-202, March, 1991.

V. Gopinathan, Y. Tsividis, K. Tan, R. Hester, "Design Considerations for High-

Frequency Continuous-Time Filters and Implementation of an Antialiasing Filter for

Digital Video," IEEE J. of Solid-State Circuits, Vol. SC-25, pp. 1368-1378, Dec., 1990.

Jaap van der Plas, "MOSFET-C Filter with Low Excess Noise and Accurate Auto-

matic Tuning," IEEE J. of Solid-State Circuits, Vol. SC-26, pp. 922-929, July, 1991.

L. R. Carley, "Trimming Analog Circuits using Floating-Gate Analog MOS Memory,"

IEEE J. of Solid-State Circuits, Vol. SC-24, pp. 1569-1575, Dec., 1989.

[6] D. Watula, J. Meador, "Auto-Programmable Impulse Neural Circuits," 2nd NASA

SERC Symposium on VLSI Design, Moscow, Idaho, pp. 6.3.1-6.3.12, Nov. 1990.

[7] R. Gregorian, G. Temes, Analog MOS Integrated Circuit_ for Signal Proce_ing. New

York: Wiley, 1986.

[8] M. Ferro, F. Salerno, R. CasteUo, "A Floating CMOS Bandgap Voltage Reference for

Differential Applications," IEEE J. of Solid-State Circuits, Vol. SC-24, pp. 690-697,

June, 1989.

[9] R. Blauschild, P. Tucei, R. Muller, R. Meyer, "A New NMOS Temperature-stable

Voltage Reference," IEEE J. of Solid-State Circuits, Vol. SC-13, pp. 767-773, Dec.,

1978.

[10] Meta-Software Inc., 1300 White Oaks Road, Campbell, CA 95008 HSPICE User'n

Manual.



=

|

=

z

4i

3- ::7 _ : •



3rd NASA Symposium on VLSI Design I991

N94-18370
9.3.1

DC and Small-Signal Physical Models for the
A1GaAs/GaAs High Electron Mobility Transistor

J. C. Sarker and J. E. Purviance

NASA Space Engineering Research Center for VLSI System Design

Department of Electrical Engineering

University of Idaho, Moscow, ID 83843

Abstract- Analytical and numerical models are developed for the microwave

small-slgnal performance_ such as transconductance, gate-to-source capaci-

tance, current gain cut-off frequency and the optimum cut-off frequency of the

AIGaAs/GaAs High Electron Mobility Transistor (HEMT)_ in both normal

and compressed transconductance regions. The validated I-V characteristics

and the small-slgnal performances of four HEMTs are presented.

Nomenclature

L : Gate length.

Z : Gate width.

#1 : Low field mobility of A1GaAs layer.

#2 : Low field mobility of two-dimensional electron gas.

d : Thickness of A1GaAs layer.

dl : Thickness of undoped A1GaAs layer.

w : Width of undepleted region in A1GaAs layer.

Nd : Doping concentration of A1GaAs layer.

n, : Sheet concentration of two-dlmensional electron gas.

n,o : Equilibrium Sheet concentration of two-dimensional electron gas.

e2 : Permittivity of A1GaAs.

Eel : Saturation electric field of A1GaAs.

E¢2 : Saturation electric field of two-dimensional electron gas.

v, : Saturation velocity of two-dimensional electron gas.

: Charge control coefficient.

: Effective width of conduction channel.

Vtho : Threshold voltage for two-dimensional electron gas.

V_ : Built-in voltage of Schottky gate on A1GaAs layer.

Vp : Effective pinch-off voltage of A1GaAs layer.

1 Introduction

High frequency solid state technology has been moving towards the use of the high electron

mobility transistors in microwave and in high speed digital circuits because of its high

frequency operation and of its tolerance to many forms of radiation. Several workers

have been studying the GaAs HEMTs both theoretically and experimentally since its first

introduction in 1980 [1]. Over the past years, analytical, numerical and/or computer-aided



9.3.9.

Undoped

Ohmic Metal

Schottky Metal

, ",..V/////////A/"

Ohmic Metal

n+-GaAs

n+-A1GaAs

Undoped GaAs

SI GaAs

Figure 1: Schematic Diagram of a Uniformly Doped A1GaAs/GaAs HEMT.

models have been reported by rn-any-authors. But, because of the comp ele_T{_, l_n s[rtiet-ure

of this device, VLSI circuit designers demand a more accurate and compact model i'or their

design. __ __ _

Among other workers, C.Z. C1q and S. Tansal [2I, in I985, proposed art anaiy{ica] model

which used the simple Trofimenkoff-type veloclty-tleld linear relktion [_. Thelr m0deied

results agree very well with the experimental data. However, their model is good only for

the linear normal transconductance region; it does not cover the current saturation re#o-Ix

and also the parasitic conduction in the AiGaAs layer. /3ut the computer-aided design

and simulation of the I-IEMT circuits demand a complete and more accurate model. In

1986, G.W. Wang and W.H. Ku [4] developed a compact but complete analytical_ model

which covers {he whole operation range of the de characteristicS. _xls model calculates

the I-V characteristics of four different HHEMTs and compares the modeled results wi{h tli*

experimental data. We have chosen their model as the basis for this work and from this

model we have developed analytical and numerical models to calculate the small-signal

performances, such as transconductance, g,,,, gate-to-source capacitance, C0, , current gain

cut-off frequency, fT, and the optimum value of the cut-off frequency, fT(Opt) before current
saturation occurs.

2 .DC Model .........

The basic structure of a FIEMT device is significantly different from a conventional fi_e!d

effect transistor. A cross sectional view of a uniformly doped A1GaAs/GaAs HEMT device

is shown in Figure 1.

At low gate voltage, it has only one current conduction channel but at high gate voltage,

it has two conduction channels: one is the two-dimensional electron gas (2-DEG) in the

interface between AIGaAs and GaAs and the other is the parasitic conduction through the

undepleted n+-A1GaAs layer. If the A1GaAs layer is not fully depleted by the Schottky

gate and the heterojunction, then the free carriers under the gate are the two-dimensional

electrons and the free electronsin the A1GaAs layer. The width of the undepleted AIGaAs

=



3rd NASA Symposium on VLSI Design 1991 9.3.3

region can be approximated by [5]

n,o ,/2e2 - (t)
w _ d - dl Nd VqNa

By setting w = 0, the A1GaAs layer is completely depleted, one can obtain the critical

value of the gate voltage, VG as

7"_so _2V_ = Vu(w = O)= Vbl - qNa(d - di - (m)
2e2 Na"

The VG < V¢ defines the normal tran_conductanee region where only the 2-DEG is

the current conduction channel and the VG > V_ defines the compressed transconductance

region where both the 2-DEG and the undepleted A1GaAs layer are the current conduction

channels.

According to the charge control model [6], the sheet charge density of the 2-DEG can

be approximated as a linear function of gate voltage and channel voltage which is given by

n,(_) = fl(V_ - V(z) - Y,h) (3)

where z is in the direction along the heterojunction.

In this dc model, for mathematical simplicity, the Trofimenkoff-type [3] electron velocity-

field relation has been used for both the 2-DEG channel and the A1GaAs parasitic con-

duction channel. The linear electron velocity-field can be related as

v(z)= /_E(z) (4)
t+___/

E¢

Here, E(z) is the electric field in the 2-DEG channel or in the undepleted A1GaAs layer

and Ec is the field at which the velocity of electrons reach the maximum value (saturation

velocity).

Using the charge control concept and the velocity-field relationship described above,

the current conducting through the 2-DEG channel can be determined by

= (5)

Similarly, the current through the undepleted A1GaAs layer can be determined by

L,, oA, = ZqNdw( )v( ) (0)

Here, for simplicity, full ionization of the donor atoms has been assumed for the current

through the A1GaAs layer.

(A) I-V Equations in the Normal Transconductance Region

When the gate voltage is low, i.e. VG <_ Vc, the normal transeonductance region is formed.

This region is then divided into the linear (VD < V_at) and the saturation (VD > V,,t)

regions. The current-voltage relationship in two different regions can be derived as follows:



9.3.4

I I
i_ L ,:-J

Depleted i

Undepleted t,._._. V(z)----- Vo ',

I "I'I'I'I'I'I'I'I*I*I'I'r_T_I[__| _ ( _ I li;i+;iiii+iii

i+!'_'!'i'"!"!"!"!"!"!_ i

' L_--+._
t |
F

t---_ x
I

Gate

n+-AIGaAs

2-DEG Channel

GaAs

Figure 2: Schematic Diagram Showing Current Saturation in the 2-DE(] Channel.

Normal LinearRegion (VD < Voo,_ ...................

Introducing equations (3) and (4) in equation (5), and integrating from source to drain

along the 2-DEO channel, the current through the channel is

ID = A( Vc - V,h - _ )VD
1

where A = _ and B = LEe2 are th_ model parameters; Va and VD are the internal

gate and drain voltages.

(ii) Normal Saturation Region (VD > V,o,)
The velocity-field relation (equation (4)) allows the velocity to saturate when the electric

field approaches infinity. But physically it is impossible; so, the model assumed that the

velocity saturation occurs when E 5> E_. Therefore, from equation (4i, the satura{_on

velocity at E = E¢ is v, = _E2".

When the drain voltage, VD becomes greater than the saturation voltage, V, ot the

situation becomes like Figure 2. At z - L_, electric field exceeds saturation field, E,,

and the electron velocity saturates; and after this the electrons move with this constant

saturation velocity. Then, using V - V+_t and _4v _ Ec2 at z - L,, equation (7) can be
written as

xD= zqzv_(y_ - y,h - _)y.o,
L¢ + v_a._ (8)

E¢2

Also from equations (3) and (5), the current in the saturation region can be writte_ as

zqfl_'_'v, V,o,)Eo_ (9)ID -----Zqfl(Vo- V_h- V, ot)V, - _ t a- Vta-

Now, using the current continuity condition, equations (8) and (9) can be combined to
obtain

(i- Kt)B(Va- V+h)

V,o,= (i - - (to)

=

Z



3rd NASA Symposium on VLSI Design 1991 9.3.5

where K1 = h_. Generally, Lc and V, at can be determined by solving a two-dimensional

Poisson's equation which has the form in the velocity saturation region

OaV

(11)

Here, 5 is the effective width of the conduction channel which is assumedwhere a = ,2_,z6"

to be invariant to the bias voltage as compared to ID and set to a constant. This Poisson's

equation is obtained by neglecting the variation of carrier concentration in the direction

perpendicular to the channel and can be solved with boundary conditions V(L = Lc) = V,a,
and E(L = L¢) = E¢. The final form of the solution becomes

gO _ Ysat _-
, ID(L- Lo)2

2 + E¢2(L- Lc) -= CIDK_ + BKx (12)

where C - _L2 L_
2 -- 2,2Z_,_ is the third model parameter. Equations (10) and (12) can be

solved simultaneously to find K1 and V, at :

K1 -- -X 4- _/X 2 4- [2CA(Vc- Vth) _ - 4B][14- L_]V_ (13)
C A( VG -- Vth )2 -- 2B

where X = B4-VD4-Vc-Vth. Then from equation (8), the saturation current equation can
be written as

ID = A(VG - V,h- Y_)V..,

1 - K1 + _V_ (14)

(B) I-V Equations in the Compressed Transconductance Region

When the gate voltage is high enough such that Va > V_, the A1GaAs layer starts to conduct

current. This current conduction mechanism can be considered similar to a parasitic
MESFET and it is shown in Figure 3.

When w = 0 at x --- L1, from equation (1) the voltage inside the channel is V = 1/o =

Vp - V_ + Vc, where W is defined as

ahG

Vp = _(d- d,- n'--Z°)2 (15)Nd

When VD < Vo, the sheet carrier concentration, n, of the whole 2-DEG channel is

equal to its equilibrium value, noo and it is independent of gate and drain voltage. The

2-DEG channel is then llke a non-linear resistor with sheet concentration, noo, while the

undepleted A1GaAs behaves like a MESFET. This equilibrium concentration is assumed

to be maximum and is given by (from equation (3))

= 3(vu - v.- (16)

/.From the schematic diagram shown in Figure 3, the compressed transconductance

region can be divided into three different regions of operation :

(i) Linear Region I : VD <_ Vo



9.3.6

Gate
! )
, ,n+-AIGaAs
, V(_) = V,°, ,
); ; ;;; ;._ ._., ........... : .... ! 2-DEG Channel
|:;. , __ I.... • ,
_---- L ---_, ,GaAs
!

Figure 3: Schematic Diagram Showing Current Saturation in the 2'DEG Channel and the

Parasitic Conduction through the AIGaAs Layer.

(ii) Linear Region II : Vo < VD < V,,t

(iii) Saturation Region : VD >_ V, at

Here) the assumption Vo,t >_ Vo has been made to allow _vision into various regions of

operation. This assumption is true for typical HEMT devices.

(i) Linear Region !

For Vo <_ Vo, the current through the A1GaAs layer is derived as in the case of the MESFET

and is given by

E[ 2 (Vt_ - VG + VD)3/_ - (V_ - Vc)3/2]3 07)

where E = _(d-_, _ and F - LEe,-are two more model parametels..-

The current through the 2-DEG channel becomes

I2 = A(Vb,- Vp- Vth)VD
1 + v-a (18)

s

The total current in this region of operation is the sum of these two currents : ID = /1 +/2.

(ii) Linear Region II

_From Figure 3, for Vo > Vo, the current flowing through the 2-DEG channel is

Zq#2n,oVo
12 =

LI+ vo
E¢2

_From this equation
Zql.t2n,oVo Vo

L1 =
12 Ec2

Current through the AIGaAs layer can be obtained from equation (6) as

xl-- Zq_Y_
1 dV

I+ Ed a.

(19)

(20)



3rd NASA Symposium on VLSI Design 1991 9.3.7

Integrating this equation for V from 0 to Vo and for z from 0 to La, and then using equation

(20) for Lx, the final expression for current becomes

[go- ](v.- (v,,-vo),/,)]E

I,= .. J (21)

The derivation of the current expression in the 2-DEG is similar to the normal region.

But here, the limits of integration for V are from Vo to VD and for z from L1 to L. After

performing the integration and using equation (20) for L1, the current through the 2-DEG

channel can be obtained as

I, = A[(Yc - Vt, - _)(VD -- Vo) + (V_ - Vp- Vth)Vo], (22)
I+YE_-

B

So, the total drain current is the sum of equations (21) and (22).

(iii) Saturation Region

For the saturation region, VD > V,,,t, the current expression for the undepleted A1GaAs

layer is the same as the linear region II (equation (21)). The principle to find the satu-

ration voltage in this operating region is similar to that in the normal region except the

contribution from the parasitic conduction has to be taken into account. From the current

continuity at the interface of the velocity saturation region and the non-saturation region

(Figure 3), the saturation voltage can be obtained as

V,., = [(1 - K1)B(Va- Vth) + 2(Vc - V_ + Vp)Vo- V_] (23)
[(Vc - Via) + (1 -- K,)B]

On the other hand, the solution of the Poisson's equation (equation (12)) in this region

becomes

CAK2_ [(Vc- Vts)V,_, y{o, (Vc- V_ + V,,)Vo + _]

VD- ]/'sat--'-- 1- K, + Y_ + BE, (24)

By solving equations (23) and (24) iteratively, values of K1 and V, at can be found. Once

K1 and V,_t are found, the current through the 2-DEG channel can be obtained as

Is = A[(Va - V,. - v-_2_-n)(V.a, - Vo) + (V_ - V. - V,h)Vo] (25)
1- K1 +-V_

The total drain current is then the sum of equations (21) and (25).

In the subthreshold region of operation the charge control is not linear; so, in addition to

the model and physical parameters, a fitting parameter, D is used to model the threshold

voltage shift of the 2-DEG caused by the drain voltage. This simple threshold voltage

correction is given by

Vth = Vt_o- D x VD (26)

So, with the nine parameters A, B, C, E, F, Vp, Vtho, V_ and D, the I-V characteristics

of the A1GaAs/GaAs HEMT device can be modeled completely.



9.3.8

3 Small-Signal Model

Evaluation and analysis of the small-signal performances of the HEMT are important for

the operation of microwave circuits. The HEMT is usually biased in the normal transcon-

ductance region without parasitic conduction for optimal low-noise and/or hlgh-frequency

performance. Some of the small-signal parameters like transconductance, gate-to-source

capacitance, current gain cut-off frequency etc. can be derived analytic_y from this

model. The derivation of these parameters in the saturated normal region and also in the

compressed transconductance region is mathematically complicated and computationally

i.nvolves more CPU time. So, to determine these parameters in those regions of operation

a eomputationaily efficient numerical technique has been used. Methods of determining of
these small-signal parameters are discussed in the next few subsections.

3,1 Transconductance, g,n

- c: =

The intrinsic transconductance, gm at constant drain voltage is defined as

g" = OVc IvD=c_,ta,,t

The g._ in the linear normal region can be obtained analytically by differentiating drain

current (equation (7)) with respect to gate voltage z - ::_ : ,_ =::==_

0 [A(V_-V_h-_)V_]_ AVDg"- ova 1+ _ - 1+ _ (27)
== = ....... :

The transconductance increases with drain voltage before current saturation and is

inversely proportional to gate length and mob_ty degradation factor (i + _). _ ........

To calculate gm in the saturation region and in the Compressed (both _near and sat-

uration) region, we _fferentiate the corresponding drain currents numerically. For this

numerical differentiation we have used the centered,finite-divided d_fferenee equation of
the form [7]

a_(v_,) = z_(v_,+,)- x_(v_, ,) (2s)
• VG_+, -- Vc__, :

Here, g,,,(Va,) isthe transconductance evaluated at the i *h point.

3.2 Gate-to-Source Capacitance, Cg.

Gate-to-source capacitance, Cg. is defined, with the assumption Cgd << C_., a_ - I-

OQT

where QT is the total charge.

E



3rd NASA Symposium on VLSI Design 1991 9.3.9

In the normal region, the A1GaAs layer is completely depleted, so the Co, is due only

to the two-dimensional electron gas. Thus, for the normal region

0c., ]
Substituting equation (3) for n,(x) and then performing the integration, we get

°[J: ]c..- oV_ q_(v_- v(_)- v,,.)a_ =
AL2(2+-})

]22
(29)

Calculation of gate-to-source capacitance in the saturation region is more complicated

because of complexity in the total charge calculation in the channel. The method we have

used to calculate the charge in the channel is given in detail in reference [8]. The final
expression of total charge, QT becomes

where

(30)

L¢ - Vo,tL AL(VG - Vth- -_)V,,.t
B + ID (31)

In this equation, the saturation current, Io is calculated by using equation (14) at the
saturation voltage, Vo_.

Once we know the total charge in the channel we can calculate the Ca, by using nu-

merical differentiation. The form of this differentiation is analogous to the g,n equation

Cg,(Vc,) = QT(Vc,+,) - QT(VG,_,)
vc,+,- vc,_, (32)

Ideally, to calculate Cg, in the compressed region, the capacitance due to the charge

accumulated in the undepleted A1GaAs layer has to be added with the capacitance due to

the 2-DEG channel. But the calculation of the capacitance due t0A1GaAs layer analyt-

ically from this model is not very straightforward. Moreover, this additional capacitance

contribution may not be very significant, particularly at high drain voltages. So, in this

work we have neglected this contribution compared to the capacitance due to the 2-DEG

channel charge. Therefore, equation (32) has also been used to calculate the gate-to-source

capacitances in the compressed transconductance region.

3.3 Current Gain Cut-off Frequency, fT

In microwave applications, the current gain cut-off frequency is the frequency used as an

indicator of the device speed. The conventional definition of fT is

gyr$/r-
2_rCg,



O,3,10

In t[te norm_ _near region, we calculated fT analytically by using equations (27) and (29);

[ Av. 1 #,Vo (33)
2,-!:,(1+

We again adopted the numerical techniques to calculate fr for normal saturated region

and both linear and saturated compressed regions, This numerical expression is given by

gm(Va,) (34)

Here, the IT, 9,,, and C a, are calculated at the i th point.

I),4 Optimum Cut-off Frequency, IT(opt)

Another important parameter in microwave applications is the optimum frequency, IT(opt).

This optimum frequency is defined as the mad'mum value of the current gain cut-off fre-

quency just b e_fgre c_Treut saturation occurs. Thus, in the normal transconductance region,

IT(opt) |s appro__fi_mated _s ....

::: _,,v.=, (35)
/_,(op_)= 2,,L,(1+ -_)(2 + -_)

Here, V_t, the value of the saturation voltage when current just starts to saturate, ¢_ be

evaluated by setting Ka = 0 in equation (10) :

B(v - (36)
v,o,= B + (VG- V,h)

4 Results and Discussion

4.1 The I-V Characteristics : - , -

To validate the de model we have developed a computer simulation program which cal-

culates the !-V characteristics over the entire region of operation. Using this simulation

program we have calculated the I-V characteristics of all the four HEMTs, The device

physical parameters and the modeling parameters of these HEMTs, taken from reference

[4], are given in Table 1,
In the derivation of the drain current equations in section 2, the dc model does not

include the effects of parasitic source and drain resistances explicitly. These effects can be

taken into account inthe model by solving the nonlinear equations which are given below

Vcs = VG + ID(Vc,VD)Rs (37)

and

VDs = VD + ID(Vc,VD)(Rs + RD) (38)

=

=



3rd NASA Symposium on VLSI Design 1991 9.3.11

Device

L(#m)

Z(#m)

V,ho(V)
V,(V)

A(mA/V')
B(V)

C(K_)
D

E(mA/V)

r(v)

HEMT #1 (TRW #2078)

0.35

65

-0.017

49.517

5.285

8.341

0.015

5.9

6.0

HEMT #2 ItEMT #3 (GE #5410) HEMT #4

1.0 0.25 1.0

145 100 1200

-0.901

101.253

1.604

0.583

7.0

-0.912

1.481

0.85

103.539

0.616

0.992

0.092

81.825

2.154

4.6

6.07.0

-2.389

2.319

0.85

454.167

0.948

0.201

0.008

542.663

3.04

1.0

1.0

Table 1: Physical and Model Parameters of the HEMTs.

where Vas and VDS are the externally applied gate and drain voltages respectively; Rs

and RD are the parasitic source and drain resistances. These two equations were solved

iteratively in the program to find the values of VG and lid for given values of external

voltages Vas and YDS.

The HEMT #1 and #2 show only normal transconductance effects; only five model

parameters, V, ho, A, B, C and D are needed in the program to calculate the I-V relation.

With these parameter values and using equations (7), (10), (13), (14), (37) and (38), we

have developed a simulation program which calculates the drain-to-source current as a

function of external drain voltage for different external gate voltages.

Figure 4 shows the I-V curve of the HEMT #1. In the program, we have swept the

drain voltage from 0 to 3 volts with a 0.2 volts steps and calculated drain-to-source currents

for gate voltages Vas = O, 0.1, 0.2, 0.3, 0.4 and 0.5 volts. As a comparison, we have also

plotted the experimental data obtained from reference [4]. From the figure, we can see a

nice agreement between our I-V results and the experimental data.

Simulated results along with experimental data [4,6] of the HEMT #2 are shown in

Figure 5. In this case the drain voltage was varied from 0 to 3 volts with 0.25 volts steps.

Drain currents for Vas = -0.8, -0.6, -0.4, -0.2 and 0 volts were calculated. The low gate

bias curves agree very well with the experimental values. As the gate bias increases a small

deviation occurs near the linear and saturation transition region.

The I-V characteristics of the HEMT #3 and #4 (double heterojunction HEMT) axe

more complex because of the compressed transconductance effect (in addition to the normal

transconductance effect). Four additional parameters Vp, V_, E and F are needed to model

this effect. So, with the nine parameter values listed in Table 1 and using the equations

(17), (18) and (21-25), we have calculated the drain-to-source currents in the compressed

transconductance region. Equation (24) was rearranged such that K1 can be written in



9.3.!2

0._

0._

0.004

0.002

w|mlaf_d
minuted

_i 0"5v o.o_Jo.
O.4V

_, o. o15

0 3 V l_(/O

0.01

V_=0.2

=O.!V

_ ._____- o.ov , o
I 2 ] 4

@S(V)

Figure 4: Characteristics of HEMT #1

simulated
o- 4_-_ IM_iured

_/ = -0.4 V

",_ = -0.6 ¥

I 2

Figure 5: I-V Characteristics of HEIvIT #2

0.02

0.015

0.01

11_(_

0._

0

_ -- -0.2 V

___ = -tl.8 ¥

VGS._ -1.0 V

v_(v)

0.3

0.2

IDS(A)

0.1

_ -- -LO

| | ! ---.L.

2 _ 4

Figure 6: Characteristics of HEMT _3 Figure 7: !-V Characteristics of HEMT #4

m



3rd NASA Symposium on VLSI Design 1991 9.3.13

terms of Voat

-( B + VD) + _/( B + VD )_ +4[CAY- B][(1 + -_)(VD -- V, at)]

K1 = 2{CAY- B}
(39)

V 2 V 2

where Y = (VG -- Vth) V, at- :-_ - -_-. Equations (23) and (39) were solved iteratively in the

program by assuming an initial value of K1 = 0 to obtain V_at and then K1. After K1 and

V, at are known, the drain current through the 2-DEG channel in the saturation region is

calculated by using equation (25).

Figure 6 shows the I-V curve of the HEMT #3. Here, we have scanned the drain

voltage from 0 to 3 volts at a step of 0.2 volts for the gate voltages, VGs = -1.0, -0.8,

-0.6, -0.4, -0.2 and 0 volts. As we can see the modeled result agrees very well with the

experimental data [4].

Finally, we have calculated the I-V characteristics of a double heterojunction HEMT

(HEMT #4) and the results, along with the experimental data are shown in Figure 7.

These results also agree fairly well with the published measured data [4].

Two of the four HEMTs (HEMT #1 and #3) are sub-half-micron gate HEMTs. Un-

modeled short channel effects such as velocity overshoot and unmodeled hot carrier effects

may occur in these two HEMTs. It is reported that these effects start to become prominent

below 0.25#m gate length [9], therefore HEMT #3 may show considerable short channel

effect in the compressed transconductance region. Moreover, this dc model was originally

developed only for the single-heterojunction HEMT. But from our simulation results of

HEMT #4, which is a double-heterojunction HEMT, we found that this model also appears

to be good for the double-hereto junction HEMT.

4.2 Small-Signal Performance Calculation

Based on the equations derived in section 3 and the physical parameters listed in Table 1,

we have developed the simulation program which calculates the small-signal performances.

Using this program we have calculated ID, gin, Cg,, fr and fT(opt) as a function of gate

voltage keeping drain voltage fixed. Table 2 shows the small-signal parameter values for

all the four HEMTs for different drain and gate bias conditions.

This small-signal model has been developed in an academic environment, based on

a quasi-static approximation. The values of the small-signal parameters are essentially

theoretical and have not been rigorously validated in this work because of the unavailability

of the experimental data.

5 Conclusion

A complete analytical dc model for the uniformly doped A1GaAs/GaAs HEMT device

has extensively analyzed and validated independently. Based on the model a simulation

program was developed to calculate the I-V characteristics. Using this program, the I-V



9.3,14

Device Bia's"C0ndition [DimA) g_(mS) C¢.(fF) f_(GHz) lr(op_)(GHz)

ttEMT #I Normal Linear Region 3.677 16.526 28.501 92,283 96.055

Vas_ = 0.4V, VDS = 0.4V
m,

HEMT #1 1.376 10.868 265.58Normal Saturation Region

VGs = 0.2V, VDs = 1.0V

6.5129

'HEMT #2 Normal Linear Region 12.389 27.471 507.09 8.622 10.698

Vas = -0.2V, Vvs = 0.5V
15.461 31.098 134.89 36.692HEMT #2

'HEMT #3

Normal Saturation Region

Vas = -0.2V, VDS = i.0V

Normal Linear Region 33.553 66.432 69.527

Vas = -0.65V, VDs = 0.2V

HEMT #3 Normal Saturation Region 9.441 244.66

Vos = -0.8v, rvs i.0v
HEMT #3 Co---mpressed Linear Region " 27.512 38.750

HEMT #3

! .....

HEMT #4

V_s = -0.2V, VDS : 0.4V

Compressed Saturation Region
Vas : -0.4V, VDS ----1.0V

Normal Linear Region
V_s : -I.SV, VDs = 0.SV

Normal Saturation Region

11.344 237.45

1583.0 11.89 13.18

2.517 14.005

2.395 i4.513

8.476 6.699

9.215 16.924

74.628 116.277

88.939 133.306

188.287 48.913

153.567 123.322

HEMT #4 500.9 42.36
VGS : -1.5V, VDS : 1.0V

ltEMT #4 Compressed Linear Region 1113.0 6.996

Vas : -0.SV, VDS : 1.0V

HEMT #4 Compressed Saturation Region 548.7 35.77

VGs = -1.0V, VDS : 1.0V

Table 2: Small-Signal Performances of the A1GaAs/GaAs HEMTs Calculated in this Work, i

curves for four_HEMTs were successfuUy c_alculated and compared with the experimental

data reported earlier [4,6].

In the second phase of the work, analytical and numerical methods were developed

to predict some of the important small-signal performances of these HEMTs. Based 6fi

this new computer-aided model, the small-signal parameters, g,,,, Cg., fr and fr(opt)

were calculated and are presented in Table 2. The proposed small-signal model for the

A1GaAs/GaAs HEMT device maybe useful to VLSI and microwave applications in future.

6 Acknowledgment : ......

The authors acknowledge NASA for funding this project under the grant NAG5-1043.

They would like to thank the NASA Space Engineering Research Center, University of

Idaho for partial funding and for providing facilities to accomplish this work. The second

author acknowledges Jesus of Nazareth for His sacrifice and example.



3rd NASA Symposium on VLSI Design 1091 9.3.15

References

[1] T. Mimura, S. Hiyamiza, T. Fujii, and K. Nambu, "A New Field Effect Transistor

with Selectively Doped GaAs/n-AI_Gal__As Hereto junctions," Jpn. Appl. Phys., Vol.

19, 1980, pp. L225-L227.

[2] C.Z. Cil and S. Tansal, "A New Model for Modulation-Doped FET's ," IEEE Electron

Device Letters, Vol. EDL-6_ Aug. 1985, pp. 434-436.

[3] F.N. Trofimenkoff, "Field-Dependent Mobility Analysis of the Field-Effect Transis-

tor," Proc. IEEE, Vol. 53, Nov. 1965, pp. 1765-1766.

[4] G.W. Wang ang W.H. Ku, "An Analytical and Computer- Aided Model of the A1-

GaAs/GaAs High Electron Mobility Transistor," IEEE TransactionJ on Electron De-

vices, Vol. ED-33, May 1986, pp. 657-663.

[5] D.L. Pulfrey and N.G. Tart, Introduction to Microelectronic Devices, Prentice-Hall,

Inc. 1989.

[6] K. Lee, M.S. Shur, T.:I. Drummond, and H. Morkoc, "Current-Voltage and

Capacitance-Voltage Characteristics of Modulation-Doped Field-Effect Transistors,"

IEEE Transactions on Electron Devices, Vol. ED-30, March 1983, pp. 207-212.

[7] S.C. Chapra and R.P. Canale, Numerical Methods for Engineers, McGraw-Hill, Inc.

1988.

[8] J.C. Sarker, M.S. Thesis, Electrical Engineering Department, University of Idaho,

1990.

[9] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrications, and Circuits, Artech

House, Inc. 1991.



l_ T ....

z

D



3rd NASA Symposium on VLSI Design 1991

N94- 18371
10.1.1

Formal Specification of a
High Speed CMOS Correlator

P. J. Windley

Department of Computer Science

University of Idaho

Moscow, ID 83843

208.885.6501

Abstract: The formal specification of a high speed CMOS correlator is presented.

The specification gives the high-level behavior of the correlator and provides

a clear, unambiguous description of the high-level architecture of the device.

1 Introduction.

The use of formal specification in designing VLSI circuits has many benefits. Perhaps

the most important result is a clear description of the design's behavior that can be used

for communication among design engineers, production engineers, test engineers, technical

writers, and, perhaps most importantly, customers. Formal specifications also provide a

firm foundation upon which analysis of the circuit design can take place. This analysis

has the potential to significantly reduce design errors as well as providing a basis for

demonstrating that the design has desired properties.

This paper presents the formal specification of a high-speed CMOS correlator [2]. The

correlator, which is designed to be used in a space-born spectrometer, contains 32 channels

and is capable of sampling at 25MHz.

2 Formal Specification and Verification.

VLSI devices can be specified at many levels of abstraction [8]. Generally, we need at least

a behavioral and a structural specification [4]. The behavioral specification is written in

logic and unambiguously describes the expected behavior of the device. The behavioral

specification is declarative rather than imperative, giving a clear relationship between the

inputs, current state, and outputs.

The structural specification describes, again using logic, how the circuit is put to-

gether. Ideally, the structural specification can be derived from design information cap-

tured by conventional CAD tools or translated from a hardware description language such

as VHDL [6].

Verification is nothing more than a mathematical analysis of the behavioral and struc-

tural models. Ideally, we would llke to show that the intended behavior follows from the

structure. This analysis, which is a type of symbolic simulation, can be done by hand or

with the aid of mechanical verification tools [5]. These mathematical models can also be

used to analytically demonstrate selected behavioral properties for a computer system.



10.1.2

3 A Brief Introduction to HOL.

To formally model hardware and to ensure the accuracy of our proofs, we felt that it

wag necessary to develop the proofs and properties using a mechanical verification system.

_$ prevents proofs from containing logical mistakes, and assures that the foundations

on which the work is based are sound. Due to the nature of the proofs, which include

q_antification over sets of objects, we felt that a system which supports hlgher-order logi¢

and a typed Iambda calculus would faciIitate our efforts. The HOL system was seIected for

this project due to its support for hlgher-order logic, generic specifications and polymorphic

type constructs. Furthermore its avaiIability, ruggedness, local support, and a growing

world-W[c[e user_ase made i_ a verya_ractive selection. In this section we will provide a

brief description of HOL.

HOL is a general t]_eorem proving system developed at the University of Cambridge

[5,1] that is based on Church's theory of simple types, or higher-order logic [3]. AIthougtr

Church developed higher-order logic as a foundation for mathematics, it can be used for

reasoning a[)out compu_-at-_o-na_ systems oira_ _in_s. _{'m_ar to predicate _ogic in allowing

quantification over variables, higher-order logic also allows quantification over predicates

and functions thus permitting more general systems to be described.

HOL is not a fuiiy automated _e0rem prover but is more than simply a proof checker,

falling somewhere between these two extremes. HOL has several features that contribute

to its use as a verification environment:

1. Several built-in theories, including booleans, individuals, numbers, products, sums,

lists, and trees. These theories build on the five axioms that form the basis of higher-

order logic to derive a large number of theorems that follow from them.

2. Rules of inference Cot h_gher-order logic. These rules contain not only the eight basic

rules of inference from tfigher-order logic, but also a large body of derived inference

rules that allow proofs to proceed using larger steps. The HOL system has rules that

implement the standard introduction and elimination rules for Predicate Calculus as

well as specialized rules for rewriting terms.

. A large collection of tactics to support goal directed proof. Examples of tactics

include REWRITE_TAC which rewrites a goal according to some previously proven the-

orem or definition, GE_i_I'AC which removes unnecessary universally quantifled vari-

ables from the front of a goal, and EQ_TAC which says that to show two things are

equivalent, we should show that they imply each other.

4. A proof management system that keeps track of the state of an interactive proof

session.

5. A metalanguage, ML, for programming and extending the theorem prover. Using

the metalanguage, tactics can be put together to form more powerful tactics, new

tactics can be written, and theorems can be aggregated to form new theories for later

use. The metalanguage makes the verification system extremely flexible.

z



3rd NASA Symposium on VLSI Design 1991 10.1.3

Operator

p

A

V

Application

tl = t2

tl,t2

tl A t2

tl V t2

tl _ t2

Meaning

t 1 equals t 2

the pair tl and t2

tl and t2

tl or t2

t 1 implies t 2

Table 1: HOL Infix Operators

Binder

V

3

g

Application

Vx.t

Bx. t

g x. t

Meaning

for all x, t

there exists an x such that t

choose an x such that t is true

Table 2: HOL Binders

In the HOL system there are several predefined constants which can belong to two

special syntactic classes. Constants of arity 2 can be declared to be infix. Infix operators

are written '°randl op rand2" instead of in the usual prefix form: "op rmadl remd2"

Table 1 shows several of HOL's built-in infix operators.

Constants can also belong another special class called binders. A familiar example of

a binder is V. If c is a binder, then the term "c x.t" (where x is a variable) is written as

shorthand for the term "c(_ x. t)". Table 2 shows several of HOL's built-in binders.

In addition to the infix constants and binders, HOL has a conditional statement that

is written a -_ b [ c, meaning "if a, then b, else c."

4 The Correlator Design.

The correlator is designed for a space borne spectrometer. The design accepts two 2-

bit data streams clocked at a maximum of 25MHz. Delayed versions of one stream are

multiplied (using a biased multiplication) with the undelayed signal on the other stream.

The products are accumulated. The process continues for the duration of the integration

cycle which is defined by the int control line. When the end of an integration period

is signaled, the results are latched into a register, the accumulators are cleared, and the

dataxdy line goes high to signal that data is ready to be read from the chip. A new

integration cycle can begin immediately. Concurrent with the new integration period, the

data from the previous integration period can be read on the output lines. Data is read in

either a word serial or byte serial mode depending on the value of a control llne.

Readers interested in additional detail are referred to [2].

5 The Correlator Specification.

This section presents the behavioral specification of the correlator.



10.1.4

A B rn int

INT
Interpreter

&

rn byte

IO
Interpreter

Figure 1: Architecture of the correlat0r shows the producer--

consumer relationship between the INT interpreter and the

IO interpreter.

The overall architecture of the behavioral description is shown in Figure !_ The archi-

tecture is based on two separate state machines which, along with the datapath, function

as singie instruction interpreters [7]. The interpreters are arranged in a producer-Consumer

architecture _---_-aregisterServ_n-g aS tI_e shared _l¢_between the -tWOinterpr_!e_tsL =: _

...... T!_eproduc_e_r p0_on ot the l-de_-gn is the iNT _nterpreter. IST performs the integra_

tion of the incoming signals in 32 channels. The interpreter controls the following state

variables:

• acc--A bank of 32, 4-bit accumulators.

• delay A bank of 3_, 2-bit delay elements.

• sr--A bank of 39., 24-bit shift registers,

• ¢ount--A bank of 32, 24-bit counters.

Each of these state variables is parameterized for time and channel numbe r and has type
:timo_nmu--*w, Where w varies with register _dth.

_he Sped fication for !NT relates the state variables at time t + 1 to the their value at

time t and the value of the inputs at time t ......

_e! integrate-int (acc, delay, st, count, datardy)
(a, b, int, rn) =

V_.

let nextstate = ((int t) -* integrate ] dump) = (

(acc (t+l), delay (t+l). sr (t+i), count (t+i), datardy (t+l)) =

nextstate (acc t, delay t, sr t, count t, datardy t)

(a t, b t, int t, rn t))

=

E

L

=



3rd NASA Symposium on VLSI Design 1991 10.1.5

The fimction nextstate evaluates to either integrate or dump depending on the value of

the int line.

The individual instructions produce new values for the state variables. In the case

of the integrate instruction new values are calculated for the ace, delay, and count

Variables. The shift register (st) is unchanged.

b_! integrate (ace, delay, sr, count, datardy)

(a, b, int, rn) --

let siEnal_product n : mapper (delay n) b in (

let new_ace n ----

rn -_ (bt4_ival 0) I

(add4 (siEnal_product n, ace n)) in

let nee_delay n ---- (n--0) -_ a [ (delay (n--l)) in

let new_count n -_

rn --_ (wordn O) [

(carry4 (signal_product n, ace n)) -_ inc (count n) [

(count n) in

(new_ace, new_delay, st, new_count, datardy)

The new values are precisely described. For example, the new value of the n th accumulator

is calculated by adding a biased multiplication of the n-delayed signal and the undelayed

signal to the current value in the same accumulator.

The consumer portion of the circuit is the I0 interpreter. The interpreter controls the

following state variables:

• sr--A bank of 32, 24-bit shift registers. This is the same register as the sr register

in the I_IT interpreter.
t

• counter--A 7-bit counter for counting the output.

• out--A 1f-bit register that latches the values on the output lines.

• borw--A state variable that indicates whether output is byte or work serial.

The specification for the IO interpreter is similar to the specification of the INT inter-

preter. The I0 interpreter has six instructions. The interpreter can be reset, it can start

the read cycle, it can end the read cycle, it can dump data from the output registers a

byte at a time, it can dump data a word at a time, or it can do nothing.



!0,I,6

_-Je! io_£n_ (st, counter, out, bore, datardy, begin)

(byte, rn, outck) =

Vt ,
let nextstate -----

((rn t) -_
((datardy t) A begin -_

((dat_rdy t) A ((val (counter t)) = 0)) -4

((datardy t) A (bore t) A (outck t) -_

((datardy t) A -_(bore t) A (outck t) -_

•'ett et ]

st az't_road J

end_xead [

dump_byte J

dump_word I

noop ) in (

(st (t+l), counter (t+l), out (t+l), bore (t+l), datardy (t+l)) =

nextstate (st t, counter t, out t, bore t, data_dy t, begin t)

(byte t, rn t, outok t))

The operation of I0 is more complicated that the operation of INT, Whenever the reset

line is raised, the state is reset as described in the specificationof the reset operation.

When the datardy llne goes high, the interpreter begins a read cycle. When the outck

lineisraised and the data.rdy lineishigh, wc dump eitherbytes or words depending on the

vMue of the bore line. There is a counter so that the correct number of bytes and words

are dumped. When the counter reaches 0 we end the read cycle (by pulling the datardy

linelow). Otherwise, we do nothing. I _....._:= ===

As an example of the instructionsin It},consider the dump,word instruction,

_de! dump_cord (st, counter, out, bore, datardy, begin)

(byte, rn, outok) :

let nee_counter = (dec counter) in

let i : (val counter) in

let new_out : short (st i) in

(st, new_counter, new_out, bore, datardy, begin)

The instruction updates the counter by decrementing the old value. The value on the

output is determined by 16 most significantbits from the ith shiftregister,where i isthe

vdue of the countc_r.

The most interesting feature of the specification of INT and I0 is that they share state.

For example, both specify changes to sr, the variable representing the shift register. INT

produces a value that is placed in sr by its dump instruction. I0 uses that value when

asked to present the results of the integration on the output lines. -

Both interpreters also specify changes to datardy, the variable representing whether

or not data is ready to be output. INT sets datardy when it has dumped the contents of

the the counter into the shift register. I{3 resets datardy when it is done outputting the

data. z

Readers of this specification who are familiar with the design may be surprised to find

that some det_!s in the circuit are not found in the specification. For instance, after the

end of the integration period ends, there is an 8 cycle delay before data can be read from

!Note that count in INT and counter in I0 are two different state variables.

=_

B



3rd NASA Symposium on VLSI Design 1991 10.1.7

the chip (i.e.data.rdy goes high). In the specificationshown above datardy goes high the

time period afterthe int lineispulled high. This isan example of the temporal abstraction

going on between the circuitlevelsof the specificationand the behavioral specifications

given here.

6 The Top-Level Specification

The final specification combines the specifications of the two interpreters and operates
them in parallel.

[-del tort_top rep (ace, delay, st, count, datardy,

begin, counter, out, borw)

(byte_e, rn, outck, a, b, int) =

((integrate_int rep (ace, delay, st, count, datardy)
(a, b, int, rn)) A

(io_int rep (st, counter, out, borw, datardy, begin)
(byte_o, rn, outck)))

The specification does not explicitly answer questions regarding the shared use of the

sr and datardy lines. For example, do INT and I0 correctly coordinate the writing and

reading of sr correctly? This and other important questions regarding the operation of

the correlator can be answered by analysis of the specification.

7 Conclusion.

This paper has presented the behavioral specification for a VLSI correlator design. Previ-

ous to this specification being written, the design was described in design documents and

papers such as [2]. These descriptions were necessarily ambiguous since they were written

in English. Deriving the specification by reading the design documents and talking to the

design engineer provides an interesting perspective on the design process. The behavioral

specification of the correlator documents the design and is useful for enhancing communi-

cation between designers, customers, and users by unambiguously describing the function
of the device.

The specification presented in this paper is a snapshot of the design. A specification is

constantly subject to revision to bring it up to date with current expectation and to correct

errors that are part of any written description. Future work will extend the specification
in two ways:

• We intend to show that the specification meets certain requirements for correct op-

eration. For example, the analysis will make explicit the synchronization conditions

that must exist between the two interpreters for the chip to function correctly and
show that they are met.



10.1.8

i We will specify the structural level by deriving it from the design information cap-

tured in the HDL description of the circuit. We intend to show that this structural

specification implies the architecture we have described above.

Acknowledgments

This work was sponsored by NASA under Space Engineering Research Center grant NAGW-

!406.

References

[11Albert CamiUeri, Mike Gordon, and Tom Melham. Hardware verification using higher

order logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct

Circuit Designs. Elsevier Scientific Publishers, 1987.

[2] J. Canaris and S. Whitaker. A high speed CMOS correlator. In NASA Space Engi-

neering Research Center Symposium on VLSI Design, pages 3.3.1-3.3.11, November

1990. _.................................

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5, 1940.

[4] Michael S.C. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G. J. Milne and P. A. Subrahmanyam, editors, Formal Aspects

of VLSI Design, pages 153-177. Elsevier Scientific Publishers, 1986.

[5] Michael S.C. Gordon. HOL: A proof generating system for higher-order logic. In

G. Birtwhistle and P.A Subrahmanyam, editors, VLSI Specification, Verification, and

Synthesis. Kluwer Academic Press, 1988.

[6] IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Manual, 1987.

[7] Phillip J. Windley_ The Formal Verification of Generic Interpreters. PhD thesis,

University of California, Davis, Division of Computer Science, June 1990.

[8] Phillip J. Windley. A hierarchical methodology for the verification of micropro-

grammed microprocessors. In Proceedings of the IEEE Symposium on Security and

Privacy, May 1990.



3rd NASA Symposium on VLSI Design 1991

N94-
A Verification Logic Representation

of Indeterministic Signal States

J. W. Gambles and P. J. Windley

NASA Space Engineering Research Center for VLSI Systems Design

University of Idaho

Moscow, Idaho 83843

10.2.1

18372

Abstract - The integration of modern CAD tools with formal verification envi-

ronments require translation from hardware description language to verifica-

tion logic. A signal representation including both unknown state and a degree

of strength indeterminacy is essential for the correct modeling of many VLSI

circuit designs. A higher-order logic theory of indeterministic logic signals is

presented.

1 Introduction

As higher transistor counts increase the complexity of VLSI circuits and the number of

potential test cases explode, formal verification methods promise value in design fault

exclusion. Before verification is accepted by design engineers, stand alone verification tools

that are used in the academic research arena must be integrated with the CAD tools being

used by VLSI designers. One major benefit of this integration is that VLSI designers wiU

enjoy increased confidence that abstract behavioral models are correct. There are several

reasons a VLSI designer may choose to use abstract behavioral models. In a top-down

design, a behavioral description may be used to simplify circuit understanding before the

implementation is designed. A behavioral model can be utilized as part of a simulation of

the entire system at an early date. After the circuit structure is designed and modeled,

the logic simulation of complex systems can become very slow. The simulation can be

made faster by replacing circuit blocks with the corresponding behavioral model. The

problem with these design approaches is that there is currently no way to relate the circuit

structural model to the abstract behavioral model. Having a verification tool available in

the VLSI CAD tool suite would allow these models to be related through mathematical

analysis.

The hardware description languages (HDL) used by VLSI CAD tools can provide the

link between these tools and the verification environment. Engineers can design using

the CAD tool HDL and this description can be automatically translated for use in the

verificationtool. This paper examines the translation of logic signal representations from

the BOLT (Block Oriented Logic Translator) HDL, used in the NOVA simulation engine,

to the HOL theorem proving system.



10.2.2

2 HOL

HOL is a general theorem proving system developed at the University of Cambridge [4,6]

based on Church's theory of simple types, or higher-order logic. Higher-order logic is suit-

able for specifying all aspects of hardware, including both structure and behavior [6,8].

In using higher-order logic, predicates are defined to represent both circuit primitives and

behavioral definitions [4]. First-order logic is well suited to represent simple combinational

circuits, but not sequential circuits. In higher-order logic, variables are allowed to range

over functions and predicates w_ch make it suitable for representing sequential circuit

behavior [8]. HOL is not an automated theorem prover but is more than simply a proof

checker, falling somewhere between these two extremes. Translation from BOLT descrip-

tions to HOL predicates requires that HOL primitives be defined to correspond to the

BOLT circuit representations.

Symbols in HOL are represented by strings of ASCII characters. Conjunction, dis-

junction, negation, implication, and equality are represented by /\, \/, _, --=>, and

= respectively. Universal quantification (for all) is symbolized ! and existential quan-

tification (there exists) is 7. The function composition operator is o and the conditional

expression "if a then b else c" is symbo_zed _a --> b ! c,

3 Logic States and Strengths

Few modern VLSI circuits are designed using only classical logic gates [3,10]. In designs

using pass-transistor, tri-state, and pre-charge logic, it is common for circui_'_ _odes t9 b_

driven from multiple circuit elements. These multiple drivers are designed to have differing

drive strengths in order for one to dominate over another in cases of contention. The drive

strength can be considered to be closely related to current drive (cha_rge soururcing) capal_ty

[7,2]. The signal values represented in the NOVA simulation engine are an extension of

Bryant's lattice theoretic approach [7,11]. In the lattice theoretic approach the elements

in the domain of signal values represent the combination of logic state, from the set True,

Falso, and Unknown; and a signal strength. These signal values form a partially ordered

set with their order based on strength dominance when circuit output values are combined.

While Bryant later abandoned the lattice theoretic approach [2] stating "while this

approach at first seems very elegant, it cannot adequately describe the effects of transistors

in the X (Unknown) state, " Cameron and Shovic have shown that the problem with the

1/nknown state can be corrected by extending the domain of signal values to include some

degree of strength indeterminacy [3]. Thus, the signal values are extended to represent

both logic states and a range of signal strength.

The Vnknown state can be the _esult of a node connected to two drivers, one drivin$

to a True and the other driving to a False, neither driver having sufficient strength to

dominate the other; or simply a node whose voltage is not yet known. Combining the cases

of "invalid" logic level and "v__'_d but not known" into a single Unknown state simplifies

the simulation algorithm but may make the simulator pessimistic since it will propagate



3rd NASA Symposium on VLSI Design 1991 10.2.3

the Unknown state when resolving some circuit nodes[2].

We refer to the combination of state and strength information as STATES. The STATES

representation presented here is consistent with that presented in [3,10] except the total

number of strengths N, is extended to include a weakest strength, Nil, which represents a

node that is disconnected from all charge sources. By definition, a signal being driven by
the Nil strength must be at the Unknown state.

3.1 Representation of STATES

Given the set of states True, False, and Unknown and a fully ordered set of strengths

al, a2,..., and aN we can define STATES. The STATES corresponding to the states True and

False are represented as a triple Kbd where:

K is 1 or 0 representing the logic state True or False;

bd represents a indeterminate range of strengths where:

b is the strongest possible strength (al < b < crN_l) which sets a lower bound on

the strength of a signal that can overdrive this state;

d is the weakest possible strength (b < d < aN-,) which sets a upper bound on the

strength of a signal that this state can overdrive.

The STATES corresponding to the Unknown state are represented as a triple Xpq where:

X represents the Unknown state;

p is the strongest possible strength driving toward 0 (_rl _< p < aN-l) which sets a lower

bound on the strength of a signal that can overdrive this state to a 1;

q is the strongest possible strength driving toward 1 (al < q < _rN-1) which sets a lower

bound on the strength of a signal that can overdrive this state to a 0.

3.2 The Number of STATES

For N strengths the number of True and False STATES is:

TF_STATES(N) = 2((N - 1) + i N - 2) +... + 1) = (N - 1)(N)

For the Unknown state the number of STATES is:

(1)

X_STATES(N) = (N - 1) 2 + 1 (2)

The plus one term in equation (2) represents the combination of Unknown state and

weakest strength, aN = Nil. This STATE is referred to as Nil. Thus, the total number of

STATES for N strengths is equal to:

TOTAL_STATES(N) = 2N 2 - 3N + 2 (3)



10.2.4

XGlO" 1

/
00"1 O"1 lo'1o'1

/
Nil

Figure 1: Base Case Signal Lattice (N=2)

4 STATES Theory

A complicated algorithm for determining the result of combining STATES is presented

in [3]. This algorithm is not satisfactory for use in HOL. We have developed a lattice

that describes the result of joining two signMs. In this lattice theoretic approach to signal

strengths, the join (least upper bound) operation represents the resolution of contending

circuit elements [11].

The lattice structure is described through the notion of immediate superiors o_ covers.

For two elements, a and b of a partially ordered set, a covers b if and only if a >b and

there exists no element z of the partially ordered set such that a > z > b [1]. A llst of all

of the elements and covers completely describe a lattice. The covers can also be used to

define a graph of the lattice. The vertices of the graph are the elements and the segments

of the graph represent the covers. If the graph is drawn such that whenever z covers !/, the

vertex z is higher than the vertex !/, it is called a-d_Iassediagram " of the lattice [1].

4.1 Defining STATES Lattice Structure

Given the base case N = 2 (N = 1 is a trivial case of one single STATE, Nil) there are four

STATES and no strength indeterminacy, meaning there is only a single value (*rl) within

the range of possible strengths. There are four covers and the lattice Hasse diagram is as

presented in [7,11], a simple diamond (Figure 1).

To extend a N strength Hasse diagram (lattice) to N + 1 strengths:

1. Add three STATES and four covers to form a new diamond at the bottom of the N

strength diagram by replacing Nil with XoutrN, adding 0*rN*rN and lcrutr2v each

covered by XzrN_rN and placing Nil at the bottom of the diagram covered by both

9. For each M = N to 2, by -1, add the following STATES and covers:



3rd NASA Symposium on VLSI Design 1991 10.2.5

(a) XffM_lff N covered by 0O'M_lffN_ 1 and covering XO'MO" N

(b) XO'NO'M_ 1 covered by lO'M_lO'N_I and covering XffMir N

(c) OaM-VrN covered by X_M-I_N and covering O0"MO" N

(d) 1CrM_xir N covered by X_rNaM_I and covering laMaN

4.2 The Number of Covers

The total number of covers for N strengths is equal to:

COVERS(N) = 4N 2 - 10N + 8 (4)

4.3 The Lattice Structure for NOVA

The NOVA simulation engine and BOLT HDL have been selected for this research so that

we may have access to commercial-scale designs written by nonacademic VLSI designers

while a translation tool to HOL is developed. In NOVA, N = 4 and crl = a (active), _r2 = r

(resistive), a3 = / (float) and a4 = Nil. Note that float > Nil and can be used to represent

signal levels at charged capacitive nodes. For N = 4, equation (3) yields 22 STATES and

equation (4) yields 32 covers. The Hasse diagram for the STATES and covers for NOVA

is shown in figure 2. In addition to identifying the llst of covers required to define the

lattice structure in the verification logic, the Hasse diagram also provides a quick, visual

understanding of the resolution of joined STATES.

5 Implementing STATES in HOL

The HOL system includes a type definition package that allows the user to define new

types and prove theorems about essential properties of the new type. The type package

automatically carries out much of the necessary formal proof required for a new type

definition. Theorems about the new type are proven, rather than simply postulating

axioms for the new type, in order to avoid the introduction of inconsistency into the logic

[9]. A new type for signal values, called strength, is defined in HOL by enumeration of all

of the STATES. Properties proven about the new type include each value being distinct, an

induction theorem, and a case analysis (perfect induction) theorem. The STATES lattice

is defined by enumeration of the covers and the function jo±n is defined to be the least

upper bound. Once the join function definition is complete, consistency of proofs that

utilize join are insured by formal proof of the lattice theoretic obligations [11] for the join

operation. These obligations are:

1. Idempotence. For all a STATES, join a a = a.

2. Commutativity. For all a and b STATES, join a b = join b a.

3. Associativity. For all a, b and c STATES, join a (join b c) -- join (join a b) c.



10.2.6

Oaa

Xaa

laa

O_ Xrr 1_

\/\/\/---
Orf Xff lrf

\/\/ ...........
Off Iff

\/
Nil

Figure 2: Signal Lattice for N=4 (NOVA)



3rd NASA Symposium on VLSI Design 1991 10.2.7

g

_1_
d ___I-q

M1

Inv2

q

Figure 3: Memory Cell Schematic Diagram

4. Existence of bottom. For all a STATES, join a Nil = a.

5.1 STATES Abstraction Function

Typically a behavioral specification is defined in terms of boolean values. An abstraction

function is required to relate STATES, used in structural specifications, to boolean values.

STATES_ABS ,ig = ((
(

((
(

sig=laa)\/(sig=lar)\/(sig=irr)\/

sig=laf)\/(sig=Irf)\/(sig=iff)) => T I

sig=0aa)\/(sig=0ar)\/(sig=0rr)\/

sig=0af)\/(sig=0rf)\/(sig=0ff)) => F I

ARB

The Unknown STATES are assigned a value ARB, defined to be an arbitrarily chosen boolean

value.

6 Theory Demonstration

A static memory circuit cell, implemented with gate level and pass transistor primitives, is

used to demonstrate the STATES theory (Figure 3). Without a signal value representation

that realizes output dominance this circuit cannot be correctly modeled. Fundamental to

the operation of this circuit is that the output strength of pass-transistor M1 dominates

the output of inverter Inv2 to force node nl to the state of the input d while the gate g

is Truo (high voltage). The feedback inverter Inv2 acts to store the state, by dominating

the pass-transistor after the gate goes Falso, turning the transistor off.

6.1 The Circuit Primitives

The memory cell structure includes three predicate definitions; a pass-transistor element,

inverter elements, and the JOIN operation. Time is represented as a number (nu_nl) stream

and circuit signals are defined to be functions of type hum to type strongth.



10.2.8

The behavioral model of the cell is not defined for the gate input being at an unknown

state. A simplified pass-transistor model is used that defines that the signal at the drain

is equal to the signal at the source if the gate is True, else it is Ni!.

NTRAN (g,,,d) =
! t.

d t = ((g t --laa)V(g t =tar)\/

(g t =lrr)\/(g t =laf)\/

(g t =lrf)V(g t =lff)) => stl
Nil

The inverter predicate has five arguments. The first three arguments are of type

strength and define the possible inverter output STATES, The first is the output STATES

for a True Output, the second for aF_ls_out_ut, and the third t_e Unknown state output.

The Unknoma output value is derived from the strongest True and False strengths. The

fourth and fifth arguments are signal functions of type nuN to type strength. The fourth

istheinverterinput and the fiflhisthe output. "........

INV Is Os Xs (in,out) =

!t.

out t =(((in t =laa)\/(in t =lar)\/

(in t =lrr)\/(in t =iaf)\/ : _ L_ :

(in t =irf)\/(in t =Iff)) => Os {

((in t =Oaa)\/(in t =Oar)\/

(in t =Orr)\/(in t =Oaf)\/

(in t =Orf)\/(in t =Off)) => Is I

zs )

6.2 JOIN

The JOIN predicate performs two operations. It determines the resulting signal value of

combining circuit outputs by applying the join function. The second operation is related

to the sequent_aI_behavior of a charge storage node. The capacitance era node may result

in a time delay when the node is driven to a new signal level. The delay time _oereases as

the strength of the driving signal decreases. This sequential behavior is modeled as h_v_g

a variable delay, whose length is based on the strength of the join function result. [5,7].

The Hasse diagram shows the relative strength of STATES and can be used to abstract

the delay values for individual STATES by segregating them into horizontal bands on the

diagram. All STATES within a common band have the same delay and the delay is longer

for lower bands. For cases where it is desired to model different delays for rise and fall

times the diagram can be Segregated right from left also.

The demonstration cell is modeled as having two possible delays. When the pass-

transistor is turned on, the storage node at the join is driven by an active strength and

the delay is defined to be zero. When the pass-transistor is turned off, the storage node



3rcl NASA Symposium on VLSI Design 1991 10.2.9

is driven by the resistive strength of the feed-back inverter and the delay is defined to be

one.

JOIN (s',s'',s:num->strength) =

' t. let sig = join (s' t) (s _' t) in

((sig = 0aa) \/

(sig = laa) \/

(sig = Xaa) \/

(sig = Xar) V
(sig = Xra)) => (s t = sig)

(s (t+l) = sig)

6.3 The Structural Description

A BOLT description of the cell is:

MODULE Q .CELL G D;

BEGIN

N1

Q
N1

END;

.NTRAN G D;

.INVR NI;

.INVR q (STR='RR');

The STR= 'RR' parameter in the second INVR invocation definesthe output strength of that

inverter as resistive.The default value used for the firstinvocation is active. The HOL

structural specificationof the cellis:

cell_IMP (d,g,q) =

? nl ni' nl'':num->strength

NTRAN (g,d,nl')

INV laa 0aa Xaa (nl,q)

INV Irr 0rr Xrr (q,nl '_)

JOIN (nl',nl'',nl)

/\
/\
/\

6.4 The Behavioral Description

When the gate of the pass-transistor is True the cell is writing the input and the output,

q, follows as the inverse of d. When the gate is False the cell is _toring the previous data.

The HOL behavioral description is:



cel!.SPEC (d,g,q) -
It,

(g t) -> (q t = -d t)
(q (t+l) - q t)

6.5 The Cell Verification _ '

Because the operation of the cell requires that the output of the pass4ransistor dominate

the resistlve Strength output 0f :INV2_d the pass-transls_0r iS not an _p_-fierl there is a

validity Condition that the signal applied to _nput:d must be stronger t_a-n resistive. This

¢on_tion is required for proper circuit operation and is not simply a verification artifact.

Va!ia! (d) ffi

! t,

(d Z _ laa ) V (d t = 0aa) ......

Because the behavior of the cell is defined only for boolean value signals at the gate,

there is a validity condition for the gate that it be either a True or False state. This

condition yields a 12 way case analysis in the proof, but is easily reduced to needing to

consider o_ly the two cases of writing and storing.

Valid2 (g) =

! t.

(g t = !aa) \/ (g t = lar) \/ (g t = Irr) \[

(g t = la_) V (g t = !r_) V (g t = H_) \/. _._ _ _
(g t Oaa) \/ (g t = oar) \/ (g t = orr) \/

(g t = oa:_) V (g t = or:_) V (g t = o:_:_)

The'Ve_f3c-ation of the ce_ ent_iS'proving that the cell structur_ clescript_on and

Validity c0ndi_ons-:'ioglcally imply--tl_e_b_av_or-_alsp-ecificat_on. The theorem pr0-ven_s7 _

I- (Validl (d) /\ V_lid2 (g) i\ cell_IMP(d,g,q)) _=>

celI_SPEC(STATES ABS o d, STATES_ABS o g,STATES_ABS o q)_, _ ........

7 Future Work :

The theory of signal lattices presented in this paper is an important first step in linking

BOLT and HOL. Future steps includei ..............................

I. Developing _nd validating a set of HOL theories corresponding to the primitive com-

ponents in the NOVA library.

2. Writing a formal semantics for BOLT.

3. Embedding BOLT's formal semantics in HOL.

These steps do not include work on translating NOVA behavioral models to HOL, a diffi-

cult, but necessary task.

E

=

=

mm

-_=



3rd NASA Symposium on VLSI Design 1991 10.2.11

8 Conclusion

The first step in the integration of CAD VLSI design tools with a verification tool is the

translation of the HDL representations into the verification logic. A verification logic the-

ory has been presented for reasoning about an indeterministic signal value representation

based on a lattice approach. This work is necessary because the previous algorithm for

joining indeterministic signal values is not suitable for a verification logic environment.

The suitability of the lattice approach is demonstrated through the verification of a static

memory cell. The lattice diagram presented also quickly provides to users the result of

combining different valued indeterminate signals.

9 Acknowledgements

This research was supported by NASA under Space Engineering Research grant NAGW-

1406.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Birkhoff, G., Lattice Theory, American Mathematical Society, 1948.

Bryant, R. E., "A Switch-Level Model and Simulator for MOS Digital Systems," IEEE

Transactions on Computers, Vol. C-33, pp.160-177, February 1984.

Cameron, K. B. and Shovic, J. C., "Calculating Minimum Logic State Requirements

for Multi-Strength Multi-Value MOS Logic Simulators, " 1987 IEEE International

Conference on Computer Design: VLSI in Computers & Processors, IEEE Computer

Society Press, pp. 672-675, 1987.

Camilleri, A., Gordon, M. and Melham, T., "Hardware Verification Using Higher

Order Logic," in D. Borrione, editor, From HDL Descriptions to Guaranteed Correct

Circuit Designs, Elsevier Scientific Publishers, pp. 43-67, 1987. Also Technical Report

No. 91, University of Cambridge Computer Laboratory, September 1986.

Dhingra, I. S., "Formal Validation of An Integrated Circuit Design Style," in G.

Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification, and

Synthesis, Kluwer Academic Publishers, pp. 293-321, 1988. Also Technical Report

No. 115, University of Cambridge Computer Laboratory, August, 1987.

Gordon, M. J. C., "HOL: A Proof Generating System for Higher-Order Logic," in G.

Birtwistle and P. A. Subrahmanyam, editors, VL3I Specification, Verification, and

Synthesis, Kluwer Academic Publishers, pp. 73-128, 1988. Also Technical Report No.

103, University of Cambridge Computer Laboratory, August, 1987.

Hayes, J. P., "A Unified Switching Theory with Applications to VLSI Design," Pro-

ceedings of the IEEE, Vol. 70, No. 10, pp.l140-1151, October 1982.



!0.2.12

[8] Me!ham, T. F., "Abstraction Mechanisms for Hardw_e Verification," in G. Birtwistle

aud P, A. Subrahmany_aa, editors, VLSI _pecification, Verification, end Svnthe_iJ,

Kluwer Academic Publishers, pp. 267-29!, 1988. Also Technic __1Report No. i06, Uni-

versity of Cambridge Computer Laboratory, May, 1987.

[9] Me!ham, T. F., "Using Recursive Types to Re,on About H_dw_e Verification,"

TechnicM Report No. 135, University of Cambridge Computer Laboratory, May, 1988.

[10] Miles, L., Pfins, P., Cameron, K., and Shovic, J., "NOVA: A New Multi-Level Logic

Simulator," 2nd NASA SERC Symposium on VLSI Design, pp. 4.1.1-4.1.!3, 1990.

[11] O!!man, J. D., Computational Aapect, of VLSI, Computer Science Press, 1984.

±±

L •

7

F



3nd NASA SERC Symposium on VLSI Design 1991 10.3.1

Formal Verification of
State Machines

M. Alahmad and P. Windley

NASA Space Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - A formal specification of VLSI state machines based on a sequence

invariant architecture is presented. The behavioral description represents a

logical description of any synchronous state machine. The structural specifica-

tion represents an adoptive architecture developed using VLSI technology to

implement the state machine. This specification becomes a tool for future ver-

ification and specification of state machines using dedicated machines and/or

alternative technologies. The verification of the state machine is done in HOL,

a theorem proving system. Using HOL, the verification shows analytically that

the circuit structure has the desired behavior.

1 Introduction

With the advancement of integrated circuit technology, the need for new methods of en-

suring design correctness is becoming more prominent. Simulation remains the dominant

method in use, but, recently, interest has grown in using formal logical analysis to show

the correctness of digital systems.

FormM verification of hardware involves using theorem-proving techniques to verify

that a stated behavioral definition of a circuit is a logical consequence of the structural

description of the circuit, i.e., proving that the structure of the circuit forces it to behave

as stated. This paper presents a formal specification and verification of a general state

machine. The specification describes the behavior and structure of the state machine. The

behavioral specification is a logical representation of a state machine. Using a particular

design in VLSI technology, a structural description based on the Sequence Invariant Ar-

chitecture is described. The structure clearly specifies how components are connected and

built to achieve the operation of the state machine. The verification shows, by analysis,

that the structural specification implies the behavioral specification using a theorem prov-

ing system known as HOL [1]. Hence, the VLSI architecture is capable of implementing

any state machine.

2 The HOL System

As described by Birtwistle and Subrahmanyam [3], the HOL system ('HOL' standing for

'higher order logic') is designed to facilitate the interactive generation of formal proofs. A

logic in which problems can be expressed is interfaced to a programming language in which



10.3.2

proof procedures and strategies can be encoded. The combination enables deduction in

logic (in the sense of chains of primitive inference steps) to be produced by invocation of

programming constructs at a higher level of abstractness.

The logic part of HOL is conventional higher-order logic. New types, constants and

axioms can be introduced by the user, and organized in logic theories. The programming

language of HOL is ML (for 'recta-language'). The type discipline of ML ensures that the

only way to create theorems in the object logic is by performing proofs; theorems have

the ML type thin, objects of which can only be constructed by the application of interface

rules to other theorems or axioms.

3 Sequential Circuits Overview

Sequential circuits are categorized as either synchronous or asynchronous, depending upon

whether or not the behavior of the circuit is clocked at discrete instants of times. The

operation of synchronous sequential circuits (the topic of this paper) is controlled by a

synchronizing pulse signal called a clock pulse or simply a clock.

Sequential machines are usually represented by state diagrams or state tables (flow

tables). A flow table has a row corresponding to every internal state of the machine and

a column corresponding to every possible input. The entry in row qi and column I,_

represents the next state produced if I,_ is applied when the machine is in state qi. Table

1 shows a flow table for an arbitrary circuit with six-states and three inputs. Once the

flow table is constructed for a given circuit, a state assignment is performed. A state

assignment is the encoding of the states of the flow table with the internal state Variables

(yl,y2, .... ,y,_). Table 2 shows the state assignment and the next state entries assignment

for Table 1. Finally, the next state equations are derived from the state assignment using

Karnaugh map techniques. We can also derive an equation that describes the output

behavior from the flow t_ble.

3.1 SISM Overview

An adaptive hardware architecture has been developed [2], that enables the designer to

design any sequential circuit based on the width of the machine w, and the number of con-

trol inputs I, without a knowledge about the sequence to be incorporated. This adaptive

architecture is called a Sequence Invariant State Machine (SISM) design.

With the SISM realization, any flow table can be implemented without a change in the

hardware configuration. That is given w, and I, a hardware circuit is easily derived, that

can implement any state machine that has a maximum of 1r control inputs, and 2 _ internal

states.

3.2 Architecture And Operation



3nd NASA SERC Symposium on VLSI Design 1991 10.3.3

Ii 12
A C, 1 B, 1

B D, 0 C, 1

C E, 0 D, 0

D F, 1 E, 1

/3

A, 0

B, 0

C, 0

D, 1

E A, 0 F. 0 E, 1
J

f iB, 0 iA, 1 F, 1

Table 1: General 6-states, 3-input flow table.

Yl

0 0 0 A

0 0 1 B

0 1 0 C

0 1 1 D

1 0 0 E

1 0 1 F

1 1 0 G

1 1 1 H

y2 y3 I1 /2 I3
0 1 0

0 1 1

1 0 0

1 0 1

0 0 0

0 0 1

0 0 0

0 0 0

1 0 0

0 0 1

0 0 1

1 1 0

0 1 0

0 0 0

0 0 0

0 0 0

1

0

1

0

1

0

0

0

1 0

1 0

0 0

1 0

0 1

1 1

0 0

0 0

0 O, 0

0 1,0

1 O, 0

1 1, 1

0 O, 1

0 1,1

0 O, 0

0 0,0

Table 2: State Assignment for Table 1.

Figure 1 shows a general SISM architecture, this architecture can be used to implement

one of the next state variables in Table 2.

I Y

Destination

StateCodes I

I
Input

Switch
Matrix

All

Next

States

I
Next

State

Logic

Yi
yi

Figure 1: General SISM Architecture.

The architecture contains the following components:

• The destination state codes are derived from the next state entries in the state

assignment table by inspection. For example, the destination state codes for state B

and state variable y_ are the next state bits Yi associated with state B. Therefore, the

destination state codes for state B are (000,110,101) under control inputs (I1;/2; Is)

and variables (Yl;Y2;Ys) respectively. One way to implement those codes is to use

constants, that is, presenting ones and zeros at the input of the structure. Also, they

could be programmed into the structure using various memory devices [3].



10.3.4

• The input switch matrix is combinational logic that produces all the possible next

state entries for each current control input.

• The next state logic consists of an independent path for each of the present states in

the state assignment flow table.

• The storage element is a D-FF that preserves the present state.

_ The o_peration of the architecture is as follows. The current control input selects the set

of potential next states that the circuit can assume (input column in the flow table). The

present state variables select the exact next state (row in the flow table) that the circuit

will assume at the next clock pulse.

4 Formal Specification

The previous section presented a description of the SISM architecture and operation. This

section presents the formal specification of the SISM architecture. The behavioral specifi-

cation is introduced first and then a structural implementation is described.

DATA

w c CS(T)

111......
SM DEVICE ........

CLR LD

CS(T+I)

Figure 2: General state machine device

4.1 The Behavioral Specification

A general behavioral description of all state machines can be specified by defining a pred-

icate that relates the inputs and outputs and defines the state transition. Figure 2 shows

a general state machine device. The behavior of the state machine device can be specified

by a predicate siam-spot, that is true only when the combination of the values of the

variables w, g, data, clr, ld; and the state variable cs is one that could occur on the cor-

responding input and output signals of the device. The variables are references to actual

signals and data as explained below.



3nd NASA SERC Symposium on VLSI Design 1991 10.3.5

'w', "(:hum)".
This represents the width of the state machine, i.e., the number of next state vari-

ables.

'g', "(: time ---* hum)".

This is the control input to the state machine. It is represented as function associated

to time. That is at time (t), the input (g) is the control input which is a number

from zero to I. Where I is the maximum number of control inputs.

'data', "(: hum ---* hum ---* hum ---* bool)".

This is the destination state codes for the entire state machine. It is represented as a

function associated with the width of the state machine and the list of data for each

of the next state variables.

'clr',"(: time _ boot)".

This signal when enabled will forces the output values to be cleared to low.

'id', "(: time ---* boot)".

This signal when enabled will load the input data to the D-ff and present it to the

output.

• 'cs', "(: time _ num _ bool)".

This is the current state value. It is represented as function associated to time. That

is at time (t) this value will enable one path from the input to the output.

The overall behavior of the state machine is given by the following logic term:

sism-- spec =

l-de! sism_spe¢ v g data ¢Ir id

(cs :num-->num-- >bool) :

(V 1;:num. cs (1;÷1) : (clr 1; -_ ZEROS w I

ld 1; -_ data (g 1;) (vale (cs 1;)) I

cs 1;))"

The predicates sism-spec asserts that the relationship between those values corresponds

to the way the state machine works in practice. That is, the next state of the machine at

time (t+l) is a function of the value of the data input and the current state at time (t).

4.2 The Structural Specification

An implementation of state machines based on the sequence invariant architecture is pre-

sented. Using tools available in ttOL the structure of the SISM can be described by

specifying high level descriptions of the major pieces of the SISM device and combining

them so that they correspond to the actual structure. The structure of the SISM can be

represented by a predicate sisra-irap with a definition as follows:



10.3.6

(sism_imp =

sism_imp w g data clr ldcs = (sism_imp_rec w w g data clr Idcs)"

The predicate sism-imp-rec defines the structure of the circuit. The predicate is de-

fined recursively on its width indicating the iterative structure of the circuit. The predicate

is defined as follows:

(sism_imp_zec =

"(slim_imp_tee 0 W g data clr ldcs = block 0 w g data
clr ldcs)

A

(sism_i__rec (n+l) w g data clr ldcs =

((sism imp rec n w g data clr ldcs) A

(block (n+l) w g data clz ldcs )))"

The predicate block gives the structure of a single slice of the circuit. Block is defined

by conjoining the predicates that specify the behaviors of each component with the logical

e0nnective (A) and using existential quantification (q) to hide the internal signals. The

following logic term describes blo_ck:

block =

_ae! block id w 8 data clr ld cs =

(3 outl out2.

(sel id w g data out1 ) A

(mux v out1 cs out2 ) A

(d_ff out2 ld clz (cs id)))"

In this definition the two internal lines (outl; out2) are hidden from the external

environment using the existential quantifier (q). The definition of block states that the

values which can appear on the external inputs and outputs of the SISM device are precisely

those which satisfy the constraints imposed by the predicates modeling the three modules

from which it is built. The modules that are used to define the predicate block are explained

next. ............................
.... 7 _- : ............ ..... .... - .... -_: : = ....

The Selector module The selector module is defined using predicates as a function.

The predicates that defines the behavior specification is a function as shown below,

sol id v g data out =

V (t:time) line.

(l_e < (2 EXP (sue ,))) :_

(out line t) = (data id line (g t))");;

i



3nd NASA SERC Symposium on VLSI Design 1991 10.3.7

WID G CS W CLR

D

OUT1

SEL MUX

(cs

LD

Figure 3: A block representing the SISM device

The selector is a device that is controlled by the control inputs. For each block there

are 2 _' selectors. Hence, 2_' outputs are presented to the next device. The data input

to the selector are the destination state codes. The outputs are all the data selected by

the current control input. Referring to the definition and to Figure 3, the selector has

three external inputs and one internal output. Some of the variables are described earlier,

however the new variables are described as follow.

• 'id', "(:num)".

This represents the current block of the state machine, i.e. if w=3 and id=l then

the current next state variable is the first variable in the SISM block.

'out', "(: num _ time -_ bool)".

This function represents all possible outputs for each next state variable under the

current control input.

The MUX Module The MUX module is a function that takes 2 _' inputs and present

one value to the output based on the current state. The following predicate describes the

behavior of MUX:

mllX_

_-ae!_ v _put cs out =

(V t:time. (out t) = (input (val w ((IBS w cs) t)) t))"
);;

Referring to the definition and to Figure 3, the MUX module has two external inputs, one

internal input, and one internal output. The internal inputs and outpus are described as

follows.



10.3.8

s 'input', "(: hum _ time _ bool)".

This is the data provided by the previous module.

which represent all possib!e next state entries.

It is a bit vector of length 2 '_

• 'outp!_t', "(: time --, bool)".

This ia the value selected by the current state as one of the next state variable at the

next clock pulse.

The D-ff Module The D-ff module is a memory device that present the input to the

output at the next clock pulse. The predicate that describes the behavior specification is

as follows:

d-at:t=

FaeI d_ff in !d olr q =

(V t:,!m,_ q(t+l) = ((clr t) -0 F I
(id_) -_ int I q_))

^ (q o : y)"
);;

Referring to the definition and to Figure 3, the following variables are defined ,

• 'in',"(: time _ bool)'.

This is the next state variable provided by the previous module to be presented to

the output at the next clock pulse.
.... 2 -2 _ _

_* 'q', "(: time _ bool)".

This is the output value which eonstitute one of th e variable a that when eo_bi_d

with the other outputs _0m the other blocks, result in the current state.

5 Verification

The goal of the verification is stated in logic as follows:

i
E

z

"V w g data clr ld cS.

sis:_imp v g data ¢!r ld os

sism_sp•c w g (D.tTt_tBS w data) c!r Id (AB$ vcs)"

The goal states that the structural implementation implies the behavioral description of

the circuit, or, that the behavior follows from the structure. In the goal, DATA-ABS and

bBS are two functions used to abstract the signals w, data and c5 which are defined at the

structural level to behavioral level signals.

The verification is approximately 60% done. The proof is carried out using induction

ou the width of the SISM. HOL provides mechanical support for induction, rewriting, case

an_ysis a_d other necessary proof techniques.



10.3.9

6 Conclusion

This paper presents the design for a SISM that is being proven to work correctly. This

is especially significant because the design of the SISM is very general. Future work will

entail tying the structural specification to the actual circuit and using this work to verify

specific state machines based on the SISM design.

References

[1] Paul Loewenstein, "Reasoning about State Machines in Higher-Order Logic", In M.

Leeser and G. Brown, editors, Workshop on Hardware Specification, Verification, and

Synthesis, Mathematical Aspects, SpringerVerlag 1989.

[2] S. Whitaker, G. Maki, and M. Shamanna, "Reliable VLSI Sequential Controllers",

NASA Space Engineering research Center, Symposium on VLSI 1990. University of
Idaho.

[3] G. Birtwistle and P. A. Subrahmanyam, Editors. "Current Trends In Hardware Veri-

fication And Automated Theorem Proving", Springer-Verlag New York Inc. 1989. pp
4-19.

[4] M. Alahmad, "Reconfigurable Sequence Invariant State Machine", Masters Thesis.

University of Idaho. Dec. 1991.



m_



3rd NASA Symposium on VLSI Design I991

 z94-18373
11.1.1

Ultra Low Power CMOS Technology

J. Burr and A. Peterson

Space, Telecommunications, and Radioscience Laboratory

Department of Electrical Engineering

Stanford University

Stanford, Ca. 94305

burr@mojave.st anford.edu

Abstract . This paper discusses the motivation, opportunities, and prob-

lems associated with implementing digital logic at very low voltages, including

the challenge of making use of the available real estate in 3D multlchlp mod-

ules, energy requirements of very large neural networks, energy optimization

metrics and their impact on system design, modeling problems, circuit design

constraints, possible fabrication process modifications to improve performance,

and barriers to practical implementation.

1 Introduction

As technology continues to scale into the submicron regime, massively parallel architec-

tures are increasingly being constrained by power considerations. Minimizing the energy

per operation throughout the system is assuming increasing importance. We are investi-

gating "Ultra Low Power CMOS" to reduce the energy per operation in massively parallel

signal processors, microsateUites, and large scale neural networks. We are investigating

operating with supply and threshold voltages of a few hundred millivolts to reduce energy

per operation by a more than 100 times.

In this paper, we show that minimum energy per operation is achieved in the sub-

threshold regime, and that the optimum performance is obtained when Vdd = V, and

Gnd = Vt - Vdd. We also show that minimum energy x time occurs when Vdd = 3V,. We

show that Vt should be chosen such that Ion/Io_r = Id/a, where Id is the logic depth and a

is the activity ratio, the fraction of gates which are switching at any given time. We also

show that Id = 11 minimizes energy in a 32x32 bit parallel multiplier.

2 Motivation

The application domains we are targeting include wideband spectrometers requiring 1012

operations per second, rnicrosateUites with 100roW power budgets, large scale neural net-

works requiring 10 is connections per second and lfJ per connection, and small, massively

parallel digital signal coprocessors.

As an example, a single SBus slot in a Sun SPARCstation occupies about 200cm a, can

accommodate over 2000cm 2 of active silicon using 3D stacked multichip module technology,

and has a power budget of 10W (see Fig 1). An architecture with a power density of

2W/cm 2 and 40 MIPS per chip, typical of modern microprocessors, would dissipate 4KW



11.1.2

i

Figure 1: 3D MCM in an SBus slot: 2000 cm 2, 10W max, Vdd = 0.7V permits !0 GIPS.

if tiled over the available area and achieve 80 billion operations per second. Only 5 cm 2 of

silicon can be used at lOW, yielding 200 MIPS. If the supply voltage is lowered to 700mV_

each chip would dissipate 5roW', and the entire 2000cm _ coUjd be used to achieve !0 bil_ion

operations per second _t IOW. : =

3 Background

Low voltage digital logic is not new. Richard Swanson described a 100mV CMOS ring

oscillator in [6]_ Eric Vittoz discussed subthreshold design techniques used in the digit_

watch _ndus_y in_4_. _ _arver Mead descrlbecr a variety of subthreshold anaIog circuits

for _eurdnet_orks-_n [1]. We-he'eve ihat tow voltage circuits_ can be used effectively for

massively parallel computation in power constrained environments, and that lowering the

voltage in Subm_cron technologies has the added benefit of maintaining manageable signal

frequencies at the system level. : :: :_ :-_ =

4,  ansistor Current ..........

The following equations [6,7] describe drain current as _, function of gate voltage, as shown

in Fig 2: _ _ ......... _ ..... : _: -::



3rd NASA Symposium on VLSI Design 199I 11.1.3

log(lo)

Iog(I d_

J subthreshold

r V

satu ration

V 2

V t

Vgs

Figure 2: Transistor current vs voltage.Current in exponential with voltage below Vt, and

quadratic above Vt.

I0"5

10-6

IOn

10-8

10-0

10-t0

threshold mismatch

I

. t I ! I tO. 5 0.1 0.15 0.2 0.25 03 '0.35 0.4

Vgs

Figure 3: Model discontinuity at Vg, = V_. The subthreshold model says I,t, = knV_. The

saturation model says Id, = _(Vg,- Vt) 2 = O. In the figure Vt = 200mV.



11.1.4

subthreshold: Vu, < It; I0 = knV]

&, = I0e .v_ (1 - e-Z)

saturation: v, < v_o< v_, + v,
14. = - V,)2

linear: Va, + Vt < V o,

Z_. = _(2(V.- V,)V_,- vL)

where V¢, is the gate-source voltage, Vt is the threshold voltage, la, is the drain current, k

is the transconductance in A/V 2, n is the gate coupling coefficient, usually around 0.7, Vr

is the thermal voltage, 0.026V, and I0 is the current at Vg, = Vt.

Note the exponential dependence of current on voltage below Vt, and the quadratic

dependence above Vt. These equations do a poor job of modeling behavior in the neigh-

borhood of Vt (see Fig 3).

relative performance vs supply and threshold voltage

5] ..... .....: , . .,-:...:.:/.4.5 .... , , "[ . ,

4 ......._"'" ....

3.5 ........-'""

3 Vt = [0:.08:,8]
23 ......._"

l.s ........_""

l ....._'"

03 ..........'"

0 0.5 1 1.5 2 7-5 _ 33 4 43 5

Vdd

Figure 4: Performance vs voltage for different values of Vt.

Performance can be approximated when the supply voltage is over threshold by

:= x/Q = _(v - v,)'/(cv).

where f is the clock frequency, k is transconductance, and C is the capacitance being

switched ...........

5 Optimum Logic Depth



3rd NASA Symposium on VLSI Design 1991 11.1.5

0.05

0.045

0.04

0.035

0.03

_ 0.025
• 0.02

0.015

0.01

0.005

0 -----..........--.L......

5 I0

multiplier power

¥ , i

_ ogic

latch

..... ?5 ' ' '15 20 25 40 45 50 55

logic depth

Figure 5: Optimum logic depth of a 32x32 bit tree multiplier. For a given ld, the supply

voltage is lowered to match the unpiped throughput. Minimum power consumption occurs

at ld = 11. Latch energy increases as Id decreases, eventually exceeding logic energy, which
decreases as ld decreases.

2

1.9

1.8

!.7

1.6

1.5

1.4

1.3

1.2!

1.1

1
5 10 15

multiplier area

, , -7-----7-
30 35 40 45 50

logicdepth

55

Figure 6: Relative area vs logic depth in a 32×32 bit multiplier. The area penalty at
Id = 11 is 37%.



11.1.6

We found the optimum logic depth in a 32× 32bit tree multiplier by reducing the supply
voltage to keepthe throughput constant (seeFig 5). We also found the area penalty using
this approach (seeFig. 6). Id = 11 is close to the propagation delay through a 4:2 adder

[9.].

6 Minimum Energy

The current available to switch a node is the difference between the current of the ON

device and the leakage current of the OFF device. In standard CMOS, Vt is so high that

Io// can be ignored, but in low voltage applications it can be an appreciable fraction of

Ion:

Q Gv Gv
t_ = 7= I L.- Ios!

[d

E& = IoHVI,#p,_ = C,V 2 _ _ 1
Io! !

1

E,_c = _aCgV 2

21,tE = E,,c+E&= CgV2(a+ x )
qL77.-1

E is minimum when I_/Iof! is maximum. Referring to Fig 2, I_/Io!t is maximum and

constant in the subthreshold region.

In the subthreshold region, if Vs, = V = Vhi - Vjo, then Io,,/Io/! = e (V_"-_*)/(r'vr) =

eW('v:r), so E depends only on V = Vh_ - Vto. Therefore, for a given Vdd, energy is constant

in the subthreshold region. For maximum performance at minimum energy, set Vhi = V't

and v_° v,- vd_.
DC energy rises exponentially as Vdd decreases. AC energy rises quadratically as Vdd

increases. For optimum Vt,

P,,¢= aCV_f

Pdo = LIlY

I_, = IdCV f

If P_c = P& and Vdd = Vt, then

I,,,/Iol1 = Id/a = ev'/('Vr)

v, = nyr ln(I,.,/10.)

Figs 7 and 8 show energy vs Vdd. Table I lists the voltages and energies at the global

minima.



3rd NASA Symposium on VLSI Design 1991 11.1.7

en,crgF vs supply_d thresholdvoltaic10-1o
'a=O. lO,ld=lO

lO-n Vt=[O:.04:.81

I012
10-13

10-14

! I

IOL'0 0.5 I
I I I

1.5 2 2.5

i q

3 3.5 4 4.5 5

10-t3

_ 10-14

Emir,@ Vdd=220mV,Vt= 120mV

I I I t I l I I10"10.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45 0.5

Vdd, V

Figure 7: Energy vs supply voltage for a = 0.10, Id = 10 in 2# CMOS

lO-tO

10-II

_ 10-1210d3

10-14

lO-IS
0 5

, , energy vs supply a.,),d threshold voltage , ,

l/_11/ a=O.01 ,Id=40

Vt=[O:.04:.81

I I .... I

0.5 1 1.5 2 2.5 3 3.5 4 4.5

• lO.tX

"'- 10"13 I

Emin@Vdd=380mV,Vt=280mV

10-14

10-15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Vdd, V

Figure 8: Energy vs supply voltage for a = 0.01, Id = 40 in 2# CMOS



11.1.8

7 Minimum Energy x Time
1/(energy x time) vs supply and du_shold voltage

2_ •

1.8 ,_,

1.6

,.4! i",
._ 1. ' " "

'* 1 i \ ',,, Vt= i.08:.08:.81

0.6 [ /'[':':: ........ """-..

0.2:: /[//" ..... :=:::::_:'__:_:_

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Vdd

Figure 9: 1/(energy x time) vs Vdd and V,. Et=_t_ occurs at 3Vt.-

The minimum energy solution is quite slow. Performance should improve dramatically in

deep submicron and with low voltage process optimizations. An alternative approach is to

minimize energy x time. If we assume transistors operate mostly in saturation, then

Et = V_Q/I = v3/(v- v,)_
Et,_i. g- at V = 3_ ......... ----- iV =

Fig 9 shows a maximum at 3Vt which grows much more pronounced at low voltage.

8 Circuit Design Constraints

A number of interesting circuit design constr_nts appear when leakage currents are large,

and when the dependence of current on voltage is exponential. Three consLr_nts we have

observed to date:

• Dynamic circuits are difficult to manage. A minimum size transistor will have a

leakage current of about 1hA at V_ = 160inV. A dynamic storage node with 100fF= :

of capacitance will hold 50fC of charge at Vdd=0.SV. A change of 100mV reqmres

movement of 10fC. 10fC/lnA - 10usec.

• Exponential dependence of current on voltage makes pass transistor logic difficult to

use. nfets cannot pass ones and pfets cannot pas zeros. In particular, using nfe_s as

access transistors for static latches does not work.



3rd NASA Symposium on VLSI Design 1991 11.1.9

parameter

reduce Xj

reduce Toz

reduce NB

negative

increase Rs, RD

decrease Vg,rnaz

(gate-src breakdown)

increase Coz

(increase energy)

decrease Va, rnaz

(punchthrough)

positive

decrease

cjsw, cgso, cgdo

increase k

decrease n

increase uo

decrease

cj, cjsw, n

reduce Na increase Ra decrease Vt

reduce ND increase Rs,RD decrease

cj, cjsw

Table 2: Process optimization opportunities.

• Fully static logic appears to work well. Transmission gate latches work nicely. SRAM

seems to work well, since one of the bitlines will be pulling down on a write.

9 Process Optimization

The opportunity exists to improve performance by optimizing fabrication processes for

low voltage operation. Carrier mobility degrades significantly in submicron processes as

channel doping is increased to prevent punchthrough in the presence of strong electric

fields. Reduced voltage operation results in weaker fields, permitting lower channel doping

which results in higher carrier mobility and increased transconductance.

Reduced voltage operation also permits lower diffusion doping, since higher diffusion

resistance will not impact circuit performance due to reduced transistor drain current.

This reduces diffusion capacitance to a negligible fraction of gate capacitance. The only

drawback of reducing diffusion doping is that lateral diffusion is reduced, increasing the

effective channel length. This is partially offset by the reduced Miller effect since the gate-

drain overlap capacitance is reduced. Table 2 summarizes the impact of various process

modifications on energy and performance.

While a lower bound of 60mV/decade is achievable at room temperature (dV =

nVTln(lO) with n - 1), dV is more typically 80mV/decade in 2# CMOS and 90mV/decade

in 0.8_ CMOS. T,,z/do can be reduced by reducing NB, since do = ¢2e,,¢,,/(qNB), where



11.!.I0

4,, = VTin(Ns/nl) and ni = x/1.5T3e-mS/vr x 10 TM [5].

Low gate, drain, and threshold voltages permit all doping concentrations to be reduced,

once again due to lower electric field strength. This has two benefits for low voltage

operation:

1. n is reduced, decreasing the subthreshold slope and thus reducing the supply voltage

(and therefore energy per operation) necessary to achieve the desired on/off current

ratio.

2. source/drain capacitances are reduced, further reducing energy per operation.

10 Barriers to Practical Implementation

A number of practical considerations place a lower bound on supply voltage. These are:

external interfacing, controlling device thresholds, maintaining adequate noise margins,

power supply desig_n , power consumption of OFF devices, and circui t speed. Multichip

module packaging provides the opportunity to isolate low-voltage subsystems from other

system components. Limits to low voltage operation may be determined to a large extent

by the power dissipation in level-shifting interface circuits. Device thresholds have been

observed to vary with transistor geometry and even location on a chip [3].

A 10 watt power supply will have to deliver 20amps at Vdd = 500inV.

11 CIS Testchip

In the BiCMOS process at Stanford's Center for Integrated Systems, pfet gates are doped

p+ and nfet gates are doped n+. This means that if the channel implant is excluded,

both devices have thresholds close to zero volts. Vt can then be adjusted by adjusting

the substrate bias voltage. We have implemented a test chip which contains a number of

simple circuit structures (see Fig 10), and will hopefully have some results in time for the

conference. The chip has the following characteristics:

• Pfet gates doped p+ have Vt _ 0V

• Independent substrate and well biases

• self-testing convolutional coder

• ring osciUator

• VCO

• single nfet, pfet, nand, latch



3rd NASA Symposium on VLSI Design 1991 11.1.11

Figure 10: Ultra Low Power test chip. Separate bias voltages together with zero-Vt pfets

permit threshold adjustment.

12 Conclusions

Submicron CMOS, together with 3D stacked multichip modules, and massively parallel

machines demand new approaches to power dissipation. We are in the very early stages of

investigating reducing energy by reducing supply and thresholds voltages. We are hopeful

that low voltage CMOS can find widespread use in performance driven, power constrained

systems.

13 Acknowledgements

This research was supported in part by NASA grants NAGW1910 and NAGW419, by a

gift from Intel Corporation, and by a grant from Stanford's Center for Integrated Systems.

Multichip modules were provided by ATT, workstations by Sun Microsystems, and VLSI

fabrication by MOSIS.

References

[1] Carver A. Mead, " Analog VLSI and Neural Systems", Addison-Wesley, 1989.



!!.!,12

JamesB. Burr and AUen M. Peterson, " Energy considerations in multichip-modu!e

based multi pr0cessors ", IEEE International Symposium on Circuits and S!t_temJ _
1991.

-_!¢ks_ud_a Pavasoyi¢ and Atadre_ G. Aod_r¢ou and Charles R. Westgate, " Charac-

terization of CMOS process variations by measuring subthreshold current", Nonde-

_tr_¢t{ve _haracterization o] Materia!_ IV, Plenum Press, 1991.

[4] Eric A. Vittoz, " Micropower techniques", DeJign of MOS VLSI CircuitJ for Telecom.

munication_, Prentice-Hall, 1985.

[5]

[61

James R. Pfiester, " Performance limits of CMOS very large scale integration", PhD

thesis_ Stanford University, 1984.

Richard M. Swanson, " Complementary MOS transistors in micropower circuits '-_,

PhD thesis, Sianford-Universit_4S::- "_-:_: :-

David A. Hod6e& and Hor_a_ce G. Jackson_ Analysis and DeJign of Digital Integrated

CircuitJ_ McGraw-Hill, 1983.



2rd NASA Symposium on VLSI Design 1991

Parallel Optimization Algorithms
and Their Implementation in VLSI Design

G. Lee and J. J. Feeley

Department of Electrical Engineering

University of Idaho

Moscow, ID 83843

Abttract- Two new parallel optimization algorithms based on the simplex method

are described. They may be executed by a SIMD parallel processor architec-

ture and be implemented in VLSI design. Several VLSI design implementations

are introduced. An application example is reported to demonstrate that the

algorithms are effective.

1 Introduction

Optimal system control is an important part of modern control theory. The kernel problem

is optimizing the behavior of systems, as in minimizing the energy or cost required to

accurately reach some required terminal state. The search for the control which attains the

desired objective while minimizing (or maximizing) a defined system criterion constitutes

the fundamental problem of optimal control [1][2][3].
To date, practical applications of optimal control theory are still quite few in number.

For a class of systems with fast response, the implementation of a real-time on-line optimal

controller has been difficult. The time-consumlng computation required for optimal con-
trol solutions has been a major obstacle. Modern supercomputers with parallel processing
architectures and very fast computation speed are not a practical solution because of their
weight, size and cost. Fast computation, small size and low cost are basic requirements
for the controller. In this paper, the technique of an algorithmically specia_zed computer
is suggested to achieve an optimal controller which can realize both real-time computa-
tion and on-line control for a rapidly responding system. Effective algorithms, parallel
architecture, and VLSI implementation are involved in the design of the controller.

Efficient optimization algorithms are very necessary for solving the two-point boundary-
value (TPBV) problems which arise in optimal control. Chazan and Miranker in 1970 [4]
originally proposed a nongradient-based parallel search algorithm for unconstrained mini-
mization which is suitable for execution using an array of parallel processors. The algorithm
involves the parallel execution of n linear searches along the same direction, starting from

n points, when the dimension of the vector of unknowns is n. Travassos and Kaufman [5]

have applied the algorithm to the solutions of optimal control systems. Housos and Wing

in 1984 [6] reported a parallel pseudo-conjugate direction algorithm that performs a set of

n linear searches in parallel along different search directions. Those parallel optimization

algorithms proceed by univariate optimization so that they are MIMD-type algorithms

[7]. Although they may be used to solve the optimal control problem, it is not easy to

shift them to VLSI design for a small size and low cost controller. Two new parallel,



11.2,2

nongradient-based algorithms for unconstrained optimization are presented in this paper.

In contrast to existing parallel optimization algorithms, the new parallel algorithms are

based on a simplex method and are SIMD-type algorithms [7]. The advantage of the new

algorithms is that they do not need a linear search and may be easily shifted to VLSI

implementation.

Three kinds of design schemes: dlg_taUy controlled analog, hybrid, and pure digital, are

presented in this paper. Their VLSI implementation and their performances are discussed.

2 New parallel optimization algorithms

The following unconstrained minimization problem is considered:

min f(X), X E _",

where f : _'_ _ _, and is usually non-quadratic and nonlinear.

We wish to find a point X* numerically such that, if e > 0, then

/(x') </(x), for x: Ilx - x'll <

Two parallel simplex algorithms, PS1 and PS2, which are based on an improved simplex

method [8][9] and use parallel function evaluations, are stated below.

Algorithm PS1- The algorithm PS1 predicts four candidate vertices simultaneously

in one iteration. Therefore at least four parallel processors are required. Each iteration

includes two phases: the first is for parallel evaluations and the second is for choosing a new

vertex to generate a new simplex via function value comparison. The computation time for

the function evaluations is always longer than the time for the function value comparison.

The execution of parallel function evaluations effectively reduces computation time since

it is a major part of the time for one iteration cycle. It is also important that the parallel

function evaluations are of the SIMD type. This allows the algorithm to proceed in the

SIMD parallel architecture. The number of parallel function evaluations required by PS1

is only about half the number required by the improved simplex algorithm of Nelder and

Mead [8].

The algorithm PSi is described below:

(0) Initial simplex:

(Oa) Set the iteration number k = O.

(Ob) Starting point v ° = (z °, z°, ... , z °) is given. An initial simplex

v o o= ..., v,,+l ] is formed in parallel by: v ° = (1 - $)v °

a f v°+ _Eiz°, ifz °#0

vi+x = _ v ° + _Ei, otherwise

where Ei = {0...0 1 0...0},i = 1,2,...,n, and _ = 0.1



3rd NASA Symposium on VLSI Design 1991 11.2.3

(:)

(0c) Parallel evaluation of the function value at the vertices of 170

yo = [f(vO1),f(vO),...,f(vO+l)] "

Parallel sorting:

Set k k+l. Let S k k k F k[X1, X2, k: = ... X,+I] and [ft, f_, k' : "",f_+l] be ordered
V t-1 and yk-1.

Find d,d = max(llX _ - X_ll),i = 2,3,...,n + I, if d is small enough, then stop,
otherwise continue as follows.

Denote

k
Xt by Xt, Xoh by X_, Xh by X,,+I ,

ft by It, foh by f_, A by k/_+1"

The centroid X is the mean of the vertices with i _¢ n + 1, i.e.,

X= l_xik-
7"_ ,=

(2) Parallel computation:

xc = (1 - _)X + _xh

x, = (1 + _)-X- _Xh

X, : (1 + a)X- - etXh

x, = (1 + 7)X- 7xh
Parallel function evaluations

f, =/(X,), A = f(X,), f, = f(X,) and f, = f(X,)

(3) Comparison and selection of new point for updating simplex:

(3a) If/, </, </,, then Xh = X, and/h =/,.

(3b) If f,h > fr > fl or fe > f, > A, then Xh = X, and fh = ft.

(3c) If fh > f, > Lh and A < Lh, then Xh = X, and A = A.

(3d) If f, > fh and fc < fsh, then X h = X, :and fh -- ft.

(3e) If f, > fh and f, > Lh or if A > f, > f,h and A > foh, do shrinkage in parallel:

X, = [X1,X°j], where X, i = (X.i + X_)/2, j = 2,3,...,n + 1, evaluate and

update F k = [II,f(Xo,),I(X,_),...,I(Xo,.+,)] and S k = X., then do

(4) Update the simplex:

let V k = S k, yk = F k, then return to (1).



11.2.4

Algorithm PS2: The algorithm PS2 is developed from the algorithm PS1 by increas-

ing the parallel processors to sixteen. Twenty processors in total are utilized to predict

twenty candidate vertices simultaneously in one iteration. The algorithm PS2 is more effec-

tive than the algorithm PS1. One iteration of the algorithm PS2 is functionally equivalent

to two iterations of the algorithm PS1. Thus the algorithm PS2 will do the same function

in roughly half the time of the algorithm PS1. Algorithm PS2 is also of the SIMD-type.

The algorithm PS2 is described below:

(0) The same as Step (0) of Algorithm PS1;

(1) The same as Step (1) of Algorithm PS1;

(2) Parallel computation:

(2a) Compute the first level direction points (four in total) in parallel:

x_ = (I- _)X + _Xh
x. = (1 +/_)x -/_xh
x. = (1 + _)X - _Xh
x, = (I+ _)X -_Xh
and find 4 conductive points in parallel

-- I ty'_n-I Xi), { _C _, _a _, 'r', 'e',X_ = _L,j=x X./+ =

(2b) Compute the second level direction points (sixteen in total) in parallel:

Xic = (1 -- fl)X, + flX.h

x,. = (I + _)X, t_x.h
Xi, = (1 + a)7¢i - aX,h
X. = (1 + "r)x_ 7X.h
where i ----'c','a','r _, 'e',

(2c) Parallel function evaluations .....

/, =/(x,)
f,_ = f(X,,), f,. = f(X,.), f,, = f(X,,) and f,, = f(X,,)

where i ='e', 'a', 'r', 'e',

(3) Comparison and updating simplex:

Set ra = O.

(3a) If L < L < /,, J ='e', or ....
if Lh > L > k or L > L </p, J ='r', or
if A > L > f.h or L < Lh, J ='_', or
if L > fh and L < f,h, j -'c', set rn - m + 1 and do (3b)

if f. > fh and f_ > f.h, or if fh > f; >--f, hand f. > foh, do slafinkage in

parallel, X, = {X_,X,_}, where X.i = (Xj+ Xx)/2, j : 2,3,..-,n+ 1, evaluate

Fk = {fx,f(X._),f(Xo,),"',f(X,,.+,)} and let s k - X., then do (4).



3rd NASA Symposium on VLSI Design 1991 11.2.5

(3b) Replacing:

Xh = Xoh, fh =- .f,h, X,h = Xj, f,h = fj, and Xi = Xji, fi = fji.

If m : 1 do (3a), otherwise do (4).

(4) The same as the step (4) of the algorithm PS1.

3 Example of application to real-time optimal control

The air-to-air missile-target intercept is a practical real-time optimal control application.

A typical intercept mission from missile launch to intercept, may take only a few seconds.

It is almost impossible to achieve true optimal control during such a short time interval

with present technology. The efficiency of the algorithm PS2 for real- time application of

optimal control is demonstrated in this section via simulation of a 3-dimensional air-to-air

missile-target intercept problem. An optimal guidance law that minimizes missile energy

expenditure with fixed final time tf and fixed final state (zero miss range) is derived in

Ref [9] using nonlinear optimal control theory. This section focuses on solving the non-

linear TPBV problem (NTPBVP) which arises in the intercept problem by the "shooting

method" using Algorithm PS2.

......"'"'"........................................................................................................ .......'""_ (x,,y, ,z, )
..'"" i ...... i

I

X

L

(x_.y,,z_)

Figure 1: 3-dimensional intercept geometry

Figure 1 shows the 3-dimensional intercept scenario. The target T moves in a straight

line at constant velocity vT and the missile M moves at controlled acceleration a(t) and its

direction angles are a(t) and/3(t). An on-board optimal controller in the missile calculates

and provides, a(t), a(t) and/3(t) to the missile thruster.

The NTPBVP obtained is



!!.2.6

X2 -_

Z3 -7-

Z 4 -_

Z 5 =

Z s _--

ZIO =

ZII :

where

X4 _cI(O) "'- 2_10 _

X 6 z3(O) = X30, _

-a(_o + _h)_,o _,(0) = _,o
-a(_o + _'h)_,, _(0) = _,_o
--az!2 _6(0) -- _eo
0

0

0

X7

X8

_9

(_Io+ _h)2+ _h-

2_1 (_)¢) = 0

• _(_I) = 0
•3(tt) : 0

(:)

z,0(tt) - 0
2_ll(_f) _--- 0

•1,(_t) :_0

Notice that the initial conditions zl0 to X6o are constant and the tern'_'nM values zl(tf)

to zs(ts) and zl0(tj) to z,2(ts) are zeros. The first six equations of (1) axe the dynamics

of the system. The second six equations are the co-state equations. The shooting met_hod

starts with estimating a set of initial values (z,(0)Zs(0)z9 (0)) T , then integrates (1) forward_

with given and estimated initial values _:(0) to z:2(0). The resulting terminal values are

usually different from the given ones. An error function E is defined by

E : _:(_))'+_,-(6)-'-+_,(ts)_+ _,o(_)2+-_,,(t_)_+ Z,,_(ts)2

The shooting metllod attempts to minimize the error functioa E:

(2)

rainE -_ 0 (3)

This can be done by means of the algorithm PS2 to update the estimated initial values

until (3) is satisfied.

The initially given condition is !

• _o = 20000 (fO
• 2Q = 3000 (fO
• 30 = 2500 (ft)
• ,o = -972 (ft/sec)

•_o = -972 (f_/_)
•_o = o (ftl_e)

and the fixed final time is t/= 5(sec).

Assume the target velocity v T is constant, the travel path of the target will be a straight

line. The target path may be calculated correctly by

1Da_ta_ taken from Ref. [10]



3rd NASA Symposium on VLSI Design 1991 11.2.7

ZT(t) = Z0r+vrt

yT(t) = yoT
zr(t) = z0r

where [z0r YOT ZOT]T is the target's initial position so that open-loop optimal control

may be employed by the missile.

To come up with open-loop optimal control numerically, one must first solve the NTP-

BVP (1). For a set of rough initial estimations

xy0 = 1

_80 "-- 1

• 90 ---- 1

using the algorithm PS2, the resulting solutions are in Table 1:

TI (see)

[0 5]

OIV PFE CMR (ft)

_:_(0)=0.65993

Xs(0)=-0.08107

z9(0)=0.92175

114 0

RMR (ft

1.287e-9

Table 1: The numerical results of the intercept scenario

TI-Time interval,
OIV-Optimal initial values,
PFE-Parallel function evaluations,
CMR-Constraint of miss range,

RMR-Real miss range.

As a rough estimation of computation time, if the PFE < 120 in five seconds as shown

in Table 1, then the real-time optimal control can be implemented for this Mr-to-Mr missile-

target intercept problem. This is very possible with modern VLSI techniques. In the next

section several VLSI design possibilities are introduced.

4 VLSI implementations

This section presents design possibilities for potential real-time, on-line, optimal con-

trollers. These optimal controllers will be algorithmically specialized parallel computers



11.2.8

consistingof a few VLSI chips. Small special-purposeoptimal controllers shouldbe useful

for certain optimal control systems, such as aircraft control, missile guidance, etc.

To conserve space, only the algorithm PS1 is considered for VLSI implementation in

this section. The design procedure can be used for algorithm PS2, but the resulting circuit

will be more complex.

4.1 Schematic design

A schematic diagram of the implementation of the algorithm PS1 is shown in Figure 2.

The dashed box performs the main function of the algorithm PS1. In order to be useful for

various control systems, a parallel function evaluator (PFE) is separated from the dashed

box. The PFE is an array of four 2 parallel processors. The complete system includes two

separate parts: the main algorithm part and the PFE. The main part is the algorithm

itself in which the design is fixed. The PFE is more flexible and is different from system

to system.

4 Function
EvaluatOrS

• i

Start
DTC

T
Digital Timing

Repeat Controller

Figure 2: Block diagram of the algorithm PS1

The operation of the system outlined in Figure 2 may be described as follows.

The IS, connected to the input X0, is for the generation of an initial simplex IX01"-"

X0(.+l)]. Via the multiplexer (Mul), the function values on the initial simplex may be

evaluated by the external PFE. The outputs of the PFE, If(X1),...,f(Zn+,)], via the

2Twenty for the algorithm PS2.



3rd NASA Symposium on VLSI Design 1091 11.2.9

demultiplexer (DMul) and a set of updating switches (USw), are saved in the simplex

memories (SMe). The Mul and the DMul also pass the initial simplex vertexes, denoted

as IX1.--X,,+I], to the SMe. Then a basic simplex with its function values is stored for

further operations.

According to the algorithm PS1, the stored simplex must be updated. To do this, the

simplex in the SMe must be first sorted by a sorting circuit (Sorting). A sorted simplex,

[Xz,'.',X,,h, Xh] with function values [f_,''',f,h,fh], is available at the output of the

Sorting. From it four direction points, Xc, X,, X, and X,, can be found in the direction

points module (DP). Similar to the initial simplex, they and their function values, fc, fa, f,

and f,, evaluated by the PFE are stored in the direction memories (DMe) via the Mul and

the DMul. A new point module (NP) compares [fc, f_, f, and f,] with [f_, f,h and fh] and

then selects a proper one of the direction points, denoted by X_,, with its function value

f/,. Via the USw the X_ replaces the vertex Xh to update the basic simplex. The positions

of Xh and fh are indexed by one of the signals gl to gn+l generated by the Sorting.

In case no new point can be selected, the NP will send out a digital signal Ds. Through

it the DTC generates another control signal Cs to the Mul and the DMul, then a shrunken

simplex from the simplex shrinkage (SSh), [X1,X,1,'" ,X,,_], with its function values is

passed to the SMe, so that the basic simplex is updated.

The simplex size module (SSi) and the convergence testing module (CT) monitor the

size of the sorted simplex and its minimal function value. Together with the size switches

(SSw) and the Sorting, when one of them satisfies a given criterion, the CT will send a

"stop" signal to finish the iterations.

The digital timing controller (DTC) is necessary to control the timing of the whole

system. The functions of the DTC may be stated by defining its inputs and outputs as

follows:

Inputs:

Start:
T:

Repeat:

Stop:
Ds:

Outputs:

Ce:

Ci:

Cs:

Cd:

Cr:
Cm:
Ct:

actuates the DTC and starts the computation,
a parameter given for setting up the width of the Ce's active
interval,
after the computation, reactuates the DCT and repeats the
solutions if necessary,
stops the iteration when the solutions are available,
active when shrinkage simplex is needed, sets up the Cs,

actuates the PFE, the Mul and the DMul, its active length is given
by the input T,

asses the initial simplex and its function values to the SMe via the
ul and the DMul,

passes the shrinkage simplex and its function values to the SMe via
the Mul and the DMul, it is controlled by the input Ds,
passes the direction points and their function values to the DMe
via the Mul and the DMul,
repeats the computation, it is controlled by the input "Repeat",
actuates the SMe and the DMe,
tests the simplex size, active at each iteration.

The design of the DTC is a normal digital logic design and is not included here.



11.2.10

To meet various application requirements, three kinds of design schemes (1) digitally

controlled analog, (2) hybrid, and (3) all-digital, are suggested here. The design of digitally

controlled analog is due to analog computation on both the PFE and the main algorithm

part. The hybrid design uses digital computation for the main algorithm. Finally the

digital design is a pure digital scheme. Due to their different characteristics, they are

employed in different circumstances as listed below.

For the digitally controlled analog controller:

1. Accuracy limited but faster computation.

2. Limited memory period.

3. More efficient for low frequency systems with shorter operation time.

For the hybrid controller:
!. Same as 1 above.

2. Unlimited memory period.

3. More ei_cient for low frequency systems with longer operation time,

For the digit_ controller:

1. Accuracy unllm]ted but slow computation.

2. Unlimited memory period.

3. No strong relation to frequency and time of system operation.

4.2 Digitally controlled analog scheme

In general, analog computation is faster than digital computation. This suggests the PFE

and the main algorithm part (not including the DTC) may be implemented by analog

techniques. However analog long-time memory is not easily implemented on a VLSI chip.

Memory time is strongly depended on the problem's complexity. If the requirement for

memory time is too long and the size requirement is critical, the hybrid computation

scheme should be considered as below.

4.3 Hybrid scheme

The hybrid scheme includes digital computation and memories in the main algorithm part.

But the PFE still uses analog techniques. In practice, the PFE is a parallel electronic

differential analyzer (EDA) which consists of some integrators. Integration computations

is more convenient with analog circuiting than with digital. Keeping the PFE in analog

will reduce computation time. A hybrid scheme is suggested in Figure 3. The system has

three sections: the PFE, the digital algorithm processor and the linkage system, in which

some analog/digital (A/D) and digital/analog (D/A) converters are essential.

Each numerical value in the digitally controlled analog scheme mentioned above, such

as each function value, each element value of a simplex vertex and each constant value,

will be described in m-bit form and be stored in a m-bit register. In order to achieve

parallel computation, the input and output to these registers are parallel m-bit data buses.

Furthermore, all of the digital devices in this system are parallel.



3rd NASA Symposium on VLSI Design 1991 11.2.11

PFE

(Parallel EDAs)

Digital

Algorithm

Section.

Figure 3: Hybrid scheme

4.4 Digital scheme

Based on the hybrid scheme, a pure digital optimal controller may be obtained by designing

a digital PFE. A key point is to design, for the PFE, a digital integrator, which is very

different from an analog one. The design of the digital PFE is related to both the solution

methods and the particular problem, and may be separated into two parts. The first

one is an algorithmically specialized unit of a solving algorithm, such as the Runge-Kutta

algorithm, and another is a computing unit of a given differential equation.

5 Conclusion

Two new parallel optimization algorithms, PS1 and PS2, based on the simplex method

are described. Four processors are required for PS1 and twenty for PS2. They may be

executed by a SIMD parallel processor architecture and may be easily shifted to VLSI

design.

The numerical result of a 3-dimensionai Mr-to-Mr missile-target intercept problem has

been reported to demonstrate that the algorithms are effective and the real-time optimal

controllers are feasible for a class of optimal control systems with fast response.

As a design example, the algorithm PS1 has been shifted to a VLSI implementations.

Three types of controller design schemes have been presented: (1) digitally controlled

analog, (2) hybrid, and (3) pure digital controller. They can be employed satisfactorily for

different application requirements.

In general, the optimal controllers converge rather rapidly, once the estimation of an

initial value is found such that the evaluation of the error function E being minimized re-

sults in a number in the neighborhood of zero. However, if the problem to be solved is very

sensitive to small perturbations in the initial co-state vector, convergence to an optimal



11.2..12

solution may be slow, or cven fail.This case was not considered in this research. To over-

come thisproblem a method [5]suggested by R. Travassos and H. Kaufman may be added

_n the design of the optimal controllers.This approach iscurrently under consideration.

References

[I] F. L. Lewis, Optimal Control, New York: Wiley, 1986.

[2] Andrew P. Sage and Chelsea C. White, III,Optimum Systems Control, Second edition,

Prentice-hall.,Englewood Cliffs,New Jersey, 1977.

[3] A. E. Bryson, Jr. and Yu-Chi Ho, Applied Optimal Control, Blaisdell Publishing

Company, 1969.

[4] D. Chazan and W. L. Miranker, A Nongradient and Parallel Algorithm for Un-

constrained Minimization, SIAM J. Control, Vol.8, No.2, pp.207-217, May 1970.

[5] R. Travassos and H. Kaufman, Parallel Algorithms for Solving Nonlinear Two-Point

Boundary-Value Problems Which Arise in Optimal Control, Journal of Optimization

Theory and Applications, Vol.30, No.l, pp.53-71, Jan. 1980.

[6] ]8. C. Housos and O. Wing, Pseudo-Conjugate Directions for the Solution of the

Nonlinear Unconstrained Optimization Problem on a Parallel Computer, Journal of

Optimization, Vol.42, No.2, pp.169-180, Feb. 1984.

[7] S. Lakshrnivarahan and Sudarshan K. Dhall, Analysis and Design of Parallel Algo-

rithms: Arithmetic and Matrix problems, McGraw-Hill, Inc., 1990.

[8] J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, Computer

Journal, Vol. 7, pp.308-313, 1965.

[9] G. Lee, Parallel Computation for Optimal Control Systems, University of Idaho, Ph.D.

Dissertation' 1991.

[10] G. M. Anderson, Comparison of Optimal Control and DifferentialGame Intercept

Missile Guidance Laws, J. Guidance and Control, Vol.4, No.2, pp.109- 115, March-

April 1981.



3rd NASA Symposium on VLSI Design 1991

N94-18375
11.3.1

Canonical Multi-Valued Input
Reed-Muller Trees and Forms

M. A. Perkowski 1 and P. D. Johnson

Department of Electrical Engineering

Portland State University

P.O. Box 751, Portland, Oregon 97207

Abstract - There is recently an increased interest in logic synthesis using EXOR

gates. The paper introduces the fundamental concept of OrthogonaI Ezpansion_

which generalizes the ring form of the Shannon expansion to the logic with

multiple-valued (my) inputs. Based on this concept we are able to define a

family of canonical tree circuits. Such circuits can be considered for binary

and multiple-valued input cases. They can be multi-level (trees and DAGs)

or flattened to two-level AND-EXOR circuits. Input decoders similar to those

used in Sum of Products (SOP) PLAs are used in realizations of multiple-

valued input functions. In the case of the binary logic the family of flattened

AND-EXOR circuits includes several forms discussed by Davlo and Green. For

the case of the logic with multlple-valued inputs_ the family of the flattened

my AND-EXOR circuits includes three expansions known from literature and

two new expansions.

1 Introduction

Although the EXOR gate exists in most VLSI cell libraries, there are no logic synthesis

systems that find optimized multi-level circuits using EXORs. The recently developed PLD

devices, such as Programmable Gate Arrays (Xilinx LCA 3000) [33], Signetics LHS501 [32],

Actel [7] or other [13], either include EXOR gates, or allow to realize them in the "universal

logic modules". Since the five input EXOR gate in Xilinx device has the same speed and

cost as, for instance, a five input OR gate [5], the new design methods are neeeded for

such technologies that will assume the usage of EXOR gates on the same full rights as

the AND and OR gates. Particularly, if a Reed-Muller [15,22] form has less terms than

a two-level AND-OR expression, this form should be used for Xilinx realization, and not

the SOP expression, as it is done nowadays.

The problem of finding the minimal generalized Reed-Muller (GRM) canonical form of

optimal polarity [14] (called also fixed-polarlty Reed-Muller [9]), as well as the problem of

finding the minimal Exclusive Sum of Products (ESOP) of a Boolean function [2,10,27,28],

are the classical ones in logic synthesis theory, but exact solutions to them have been

proposed for only small functions [16,17].

Solving the above two problems, and creating other new methods of multi-level EXOR

circuits design is practically important for several reasons: (1) It has long been the ex-

perience of logic designers, that the EXOR circuits can be more economical than the

1This research was supported in part by the NSF Research Initiation Award for the first author



11.3.2

conventional inclusive (AND-OR) normal circuits. This was also confirmed practically on

many practical examples, especially on arithmetic and telecommunication circuits [1,12].

It was also proven theoretica.l!y [26] on worst case and arithmetic functions. (2) The struc-

ture of EXOR circuits implementations is especially suitable for VLSI, optical, and some

other recent technologies. The RM and GRM forms have absolutely superior design-for-

test properties [6,11,21,23], unmatched by other realizations. This was not used in the

past since the EXOR gate realizations were slow and area-expensive. With the arrival of

PGA devices this deficiency no longer holds and the theories developed for instance in

[6,11,21,23] should be practically used. (3) Currently, the widely used logic minimization

programs such as Espresso [3] and MIS II do not take into account EXOR gates in their

minimization processes which often causes nonminimal results. There is a growing indus-

trial interest among CAD logic synthesis tools users community to have a program that

would generate optimized circuits including EXOR gates [12], and such tools start to be

introduced to CAE market (for instance by Mentor Graphics Inc.). (4) The new tools for

ESOP synthesis are either heuristic [2,10,18'27,28] or produce exact solutions for general

ESOPs [16,17,20], but are so slow that can be applied only to small functions. For few

canonical forms included in ESOPs optimal programs exist for functions of about 10 vari-

ables [29,30,3i]i It is therefore importan_ to construct programs that will be faster than

the current exact minimizers and still be able to produce quasi-minimal solutions.

A book by Davio [4] and a paper by Green [9] give information on the numbers and

properties of various canonical forms being specializations of binary ESOPs, which may

be useful to create emcient algorithms for them. In [19] we presented a family of multiple-

valued input ezpansion_. In this paper we will present a subset of the family from [19], but

we will present the material in a more complete and systematic way. We will introduce

new canonical binary and multiple-valued forms and expressions. Forms, Directed Acyclic

Graphs (DAGs), Trees and expressions obtained by the introduced here tree searching

methods will be all called ezpansions. The ultimate goal of the research reported here is

to create synthesis programs, exact and approximate, for all known and some new forms

being subsets of binary and multiple-valued input ESOPs.

2 Binary Generalizations of Reed-Muller Forms

A Reed-Muller (RM) ezpression (for binary logic) is an exclusive sum of products of pos-

itive (non-complemented) input variables. A Negative Reed-Muller (NRM) ezpression is

an exclusive sum of products of negative (complemented) input variables. Both these

expansions are called Single Polarity Reed-Muller Forms.

Definition _.,1. The literal zi c is a variable zl in either positive ( zl ) or comple-

mented ( ¢i ) form.

Let us consider the following form:

c g,+izlz_ (9 .... (9 g_._lzlcz_" z,," (1)f(:_l, ..., x,,) = go (9 91Xx (9 .... (9 g,,_ (9 _ ¢ "'"

where: 9i = Oor 1, andzl _ = zi or :_i.



3rd NASA Symposium on VLSI Design 1991 11.3.3

Definition _._. By a Generalized Reed-Muller Form (GEM) one understands a form

1 in which each variable can be complemented (negative) or not complemented (positive),
but can not stand in both forms.

Such forms are canonical, which means that only one such form exists for every polarity

of variables (there are 2" such polarities for a Boolean function of n binary inputs, which

means that there are 2" corresponding GRM forms). Applying the principle of duality to

all presented forms one gets the dual forms: the system (@, .) is replaced with the dual

system (®, +). All results of this paper, after applying the principle of duality to them,

hold in the dual system as well. Let us observe that the circuits generated for both systems

can be implemented using EXOR and NOR gates or EXOR and NAND gates.

By "flattening" we understand applying the Boolean rule, a(b $ e) = a b @ a c.

Flattening is used to convert trees and multi-level expressions to two-level expressions,

such as Reed-Muller forms, or ESOPs.

The well-known Shannon expansion for the case of ESOP expansion is as follows:

Y(_l,..., _,,...,_.) :

(2)

By applying laws _ = 1 _ a and a = 1 (9 _ one gets:

/(_,...,_,, ...,_,) =

1(_,,...,_, = 0,...,_,) • _,. [f(_x,...,_, = 0,...,_'`) • f(_,, ...,_, = 1,...,_,)] (3)

and

f(_,,...,_,, ...,_,,) =

/(z,, ..., z, = 1,...,z,,) @ £i. [/(za,...,zi = 0,...,x'`) @ f(z,,...,zi = 1, ..., z'`)] (4)

In the short form:

f = _,./_, • e, f_, (5)

f = f,,, • _,. [/_, • /_,] (6)

/ = f,, • e,. [f_, • /_,] (7)

Let us observe that these expansion formulas have been applied by several authors for

the synthesis of GRM forms for completely specified functions [4]. Davio [4] and Green

[9] use them as a base of Kroneeker Reed-Muller (KRM), Pseudo-Kronecker Reed-Muller
(PKRM), and Qua_i-Kroneeker Reed-Muller (QKRM) forms (Green uses also trees for
better explanation). If only rule 6 is used repeatedly for some fixed order of expansion

variables, the RM Trees are created, which correspond to RM forms after their flattening.

If for every variable one uses either rule 6 or rule 7, the GRM Trees are created, from

which GRMs are obtained by flattening (which proves in other way why there is 2" of such

forms). If for every variable one uses either rule 5, rule 6, or rule 7, the KRM Trees are

created, from which KRMs are obtained by flattening (which proves in other way why there

is 3" of such forms). If rules 5, 6 and 7 are used, but in each subtree there is a choice of a



I!.3.4

rule, the PKRM Trees are generated from which PKRM forms are obtained by flattening.

Now_ if additionally we allow the expansion variables to have various orders (but the same

in the entire tree), one obtains the QKRM Trees, and PKRM flattened forms, respectively.

One can now see that a further natural generalization is to allow various orders of variables

in subtrees of QKRM trees to create an even wider family of trees. There are two ways of

generalizing those forms for the logic with multiple-valued inputs. One was shown in [19].

The other one will be presented here.

3 Generalizations of Reed-Muller Forms for the Logic

with Multiple-Valued Inputs .....

Definition 3.1. A multiple-valued input, two-valued output, completely specified switch-

ing function f (ran!tip!e-valued function, for short)is a mapping: fiX,, X2, ..., X,):

P1 × P_ x ... 1:', _ {0,1}, where Xi is a multiple-valued variable, Pi = {0, 1, ... , Pi

1} is a set of truth values that this variable may assume. This is a generalization of an

ordinary n-lnput switching function f: {0, I} n _ {0,1}.

Definition 3._. For any subset Si C Pi, Xi s_ is a literal of Xi. The set of values 5'/will

be called the polarity of literal Xi s_. The literal Xi s' , where Si E Pi is defined as follows:

Xi s_ = 1 if Xi E Si; and Xi s_ = 0 otherwise.

Ezample 3.1. For values 0,1 or 2 of a 5-valued variable X, the literal X °'1'2 equals 1.

For values 3 or 4 of a 5-valued variable X, the value of the literal X 0'1'_ equals 0.

Definition 3.3. A product ofliterals, X1 sl X2 s2 ... X, s", is referred to as a product term

(also called term or product for short). A sum of products is denoted as a (multi-valued

input) sum-ofproducts ezpression (SOPE).

Ezample $.Y.. 2-bit decoders have pairs of primary inputs of the function as their inputs.

Assume pairing of variables X1 = (zi, zj). The corresponding 2-bit decoder has two input

variables;zl andzj, and22 = 4outputs: _ + z-j, zi + zj, zi+ z-j, zi+ zj. Those

outputs correspond to the following literals of variable XI: X1 °'1'2, Xa °'x'3, Xl °'2'z, X11'2'3,

respectively.

Switching functions with multiple-valued inputs, two-valued outputs, find several ap-

plications in logic design, pattern recognition, and other areas. In logic design, they are

primarily used for the minimization of PLAs that have 2-bit decoders on the inputs. A

Programmable Logic Array (PLA) with r-bit input decoders directly realizes a SOPE of

a T-valued input, two-valued output, function [25]. Such decoders can be also used in

any other realization of the logic with multiple-valued inputs, like multiple-valued input

ESOPs [18,27]. A simplified form of such decoders was used in [29,30,31] in the realization

of Multiple-Valued Input Kronecker Reed-Muller Forms (MIKRMs). It will be also used

in the "fixed-polarity" Multi-Valued Input Kronecker Reed-Muller Trees (MIKRMTs) that

will be introduced here. This simplification consists in creating a simplified decoder with

2" - 1 outputs for r input signals. The set of outputs of the simplified decoder is a subset of

functions (all but one) realized by a standard decoder. For instance, for a 4-valued input

signal X one needs any three outputs of a standard decoder from Example 3.2.



3rd NASA Symposium on VLSI Design 1991 11.3.5

In the case of binary-input logic, each variable zi from a GRM form can have one of

two possible polarities, 0 or 1. The notation used for binary functions is: z? = z_, zl 1 =

z_. Let us observe that if two polarities were available for even a single variable, then the

ESOP expression including literals of both polarities would be not canonical, for instance

z and 1 $ _ would represent two different expressions for the same function f(z) = z.

The question arises, how to create canonical generalized Reed-Muller forms for multiple-

valued input logic. Methods were shown in [19,29,30,31]. Here we will present another

method, that allows for more general interpretations. It is next used to create the fam-

ily of canonical forms and trees. Let us first observe that in a logic with a pl-valued

input Xi there exists pl different single logic values: for variable Xi one can create pi

different literals with arbitrary single-value polarities. It is obvious that if we will take

all those literals to the ESOP expression, then there will be more that one way to de-

scribe any Boolean variable function of a single variable. If a single literal from this set

of literals is removed, then the remaining literals describe any single-input function in an

univocal (canonical) way. For instance, for a p-valued variable X one has the literals:

X i°, X _1, X _2, ... , X i,-_ . Removing any one of them, say X 2, one gets the following

].iterals: X °, X 1 X 3 X 4 X p-1. Such literals will be called allowed Iiterals. Literal

X 2 is univocally created as 1 @ X ° • X 1 • X 3 _ ... @ X v-1. It can be proven [29,30,31]

that for a CRM expansion one can take any p-1 single-valued literals, and moreover, any

p-1 literals that form an orthogonal polarity matriz. For instance for p=4 one can have the

following set of allowed literals: {X °,1,2, X °,1,3, X°,2,3}, which is described by a polarity
matrix:

1 1 1 0 X °,1,2

PM(X) = 1 1 0 1 = X °,1,3 (8)
1 0 1 1 X °'2'3

It is assumed that logic value 1 (universe) is available. This corresponds to a literal with all

possible values, which in turn means a row of all ones in the "expanded" polarity matrix.

The orthogonal expanded polarity matrix includes also a row of ones which corresponds

to the universe 1. For the above example the expanded polarity matrix is:

EPM(X)

1110

1101

1011

1111

XO,1,2

XO,l,3

XOt2,3

XO,1,2,3

XO,I,2

XO,l,3

XO,2,3

1

(9)

Let us observe that all possible literals can be created by exoring rows of this matrix.

The Ezpanded Polarity Matriz of variable Xi is also called polarity of this variable. Let us

observe that there are the following expanded polarity matrices of binary variables:

POLARITY-2-1-A: EPM(X) = X" = 1 0

[1]POLARITY-2-1-B: EPM(X)= X_ = 0 1

[1o]PO A TY-2-2: EPM(X)= Xl = 0 1



11.3.6

Let us observe that when allvariablesare in polarityPOLARITY-2-I-B the function is

in the binary Reed-Muller form. When allvariables are in polarity POLARITY-2-1-A the

function is in the binary Negative Reed-Muller form. When allvariables are in polarity

POLARITY-2-2 the function isin the binary canonical AND-EXOR minterm form. When

each variable iseitherin polarity POLARITY-2-1-A or in polarity POLARITY-2-1-B, the

function isin a GRM form. Applying expansions ofvariablesaccording to POLARITY-2-1-

A or polarity POLARITY-2-2, we obtain a new (mixed polarity)canonical form. Similarly,

applying expansions of variables according to POLARITY-2-1-B or polarity POLARITY-

2-2, we obtain another new (mixed polarity) canonical form. Applying expansions of

variablesaccording to POLARITY-2-1-A, POLARITY-2-1-B or polarity POLARITY-2-2,

we obtain the Kronecker Rced-MuUer canonical form [4,8].The concept of the polarity

matrix will allow now to generalize the concept of canonical trees and forms to the logic

with multiple-valued inputs.

Any form in which all variables are in the same polarity is called a Multiple-Valued

Input, Binary Output Restricted GRMs (MIRGRM) form. Such form iscanonical since the

expansion isunique for each of itsvariables.It can be shown that for a logicwith 3-valued

inputs there arc 29 various polarities,and 29 MIRGRMs. The number of MIRGRM forms

for a logic with p-valued inputs_ can be calculated_...........from the known mathematical___ _ results on

the number of orthogonal zero-one matrices. Assuming that universe 1 is available (which

is reasonable for practical reasons), expansions that use row of ones in expanded polarity

matrix are more interesting. Under such assumption, some examples Of sets Of allowed

llterals for a 4-valued input variable X are: {X0'L2 , X °'1'3, XL2'3}, {X LD, X 2'3, XD},

{X0,_, X0, _, X°,*,2}, {X 1.3, X 2,3, X_'_,3}. It can be easily checked that for all those sets

a complete set of all literal values cart be obtained from other allowed llterals by exoring

rows of the expanded polarity matrix. There are examples of using switching functions

with such literals for practical circuits such as adders [20,30,31].

Reed-Muller forms are extremely easily testable [6,21,23]. We have proved in a forth-

coming paper that also all the generalized binary (and even multiple-valued_ Reed-Muller

forms discussed here have very good testability properties. Among MiRGRMs for 4-valued

logic especially preferable is the form which corresponds to the set of allowed literals:

{X LD, X u,3, XL2,3}, since the decoder is very simple' a single OR gate: za = X LD, z2 =

X 2's, zx + z2 = X i'2'3. The test generation for this form is easy (it uses an adaptation

of methods from the literature). It minimizes the total layout area comparing to other

decoders, because of small area of the OR gate.

Definition 5.$. The set of allowed literals for a p-valued variable X is a set with p - 1

elements whose corresponding polarity matrix is orthogonal.

Definition 5.5. Allowed literal is a literal with the set Of values corresponding to =_ row

of an orthogonal polarity matrix.

Definition ,L6. Polarity vector PV = [PM1, PM2, ..., PM,,] is a vector of polarity

matrices of input variables. .........

Definition $. 7. By a Multiple-Valued Input Kroneeker Reed-Muller (MIKRM) Bzpres-

sion for a polarity vector one understands an exclusive sum of products in which all

(multiple-valued) literals are allowed literals for this polarity vector.



3rd NASA Symposium on VLSI Design 1991 11.3.7

It can be proven [31] that MIKRM expression is canonical (which means that if for each

variable a single polarity is selected, then there exists only one MIKRM expression for this

set of variables and their corresponding polarities). It results directly from the fact that

for each of its input variables there exists a unique expansion. Therefore we will refer from

now on to a MIKRM form, remembering that there are many such forms for a function.

Since for ternary variables there are 29 polarities, there are 29 '_ MIKRMs for a function of

n ternary variables. If the universe is not a row of an EPM(X) then all terms of MIKRM

need to include literals of variable X. This is of course of only theoretical interest, since in

the existing technologies the universe (logic constant 1) is available at no cost.

As we can see, the MIKRM form is a generalization of the concepts of GRM and KRM

forms. It can be observed that there are no separate generalizations of GRMs and KRMs

for the logic with multiple-valued inputs.

It results from the above definitions that the MIKRM class is properly included in the

ESOP class. The introduced above concepts and definitions will be now illustrated with

an example.

F.,zample 3.3. Assuming 4-valued input variables X and Y, the expression:

f(X,Y) = 1 (3 X °'1'2 yO,1,2 @ xO,1,3 y2,3 (3 X1,2,3 y_,3 (3 X °'2'3 y1,2,3

is an ESOP but it is not a MIKRM form because there exists the variable X that has

four different polarities, while only three polarities are allowed for it. The equivalent

MIKRM can be obtained by the replacement of the fourth literal of variable X by an

EXOR combination of its another literals:

.f(X, Y) = 1 (3 (1 (3 X °'''3 (3 X _'2'3 (3X °'2'3) yO,,,2 (3 XO,,,3 y2,3 (3 X_,2,:3 y2,3 (3 XO,2,3 y,,2,s.

The rule X °'1'2 = 1 (3 X °'1'3 (3 X 1'2'3 (3X °'2'3 can be written as: 1111(31101@0111(31011 =

1110. By using the "flattening" Boolean rule the expression f(X, Y) can be now converted

to the exor of products form:

f(X,Y) = 1 (3 yO,L2 (3 xo,L3 yO,1,2 (3 X1,2,3 yO,1,2 (3

xO,2,3 yO,1,2 (3 xO,L3 y2,3 (3 X1,2;3 y2,3 (3 xO,2,3 yI,2,_.

As we can easily verify, this last form is a MIKRM, since all literals are now allowed, and

[1 1 0 1] [1 1 10]
PM(X) = 0 1 1 1 , PM(Y)-- 0 0 1 1 .

1 0 1 1 0 1 1 1

4 The Orthogonal Expansion for Multiple-Valued In-

put Switching Functions

Let us assume that a Boolean function in a form of ESOP is represented as a list of terms

called ARESOP. In particular, it can be a set of minterms, or a set of disjoint cubes



11.3.8

representing both a SOP and an ESOP. Our algorithms, however, can assume arbitrary

ESOP, for any kind of orthogonal expansion.

Let us assume that given is a vector of ezpanded polarity matriceJ:

PV = [PMI,PM2,...,PMn].

To perform an expansion of an ESOP ARESOP with respect to an expanded polarity

matrix PM(XI) of variable Xi, one has to convert every literal of variable Xi in all cubes

from the ARESOP to an EXOR combination of literals that are allowed for this polarity

(a universe (a vector of ones) is treated as an allowed literal as well). If a cube CUB of

ARESOP has no literal Xi s and the universe is absent from the expanded polarity matrix,

cube CUB should be first represented as 1. CUB, and next the universe i from it should

be converted to the EXOR combination of literals allowed for variable Xi. (This is a

generalization of a binary rule a = ab _B ab). It results from the orthogonal properties

of the expanded polarity matrix that such conversion for variable Xi exists and is unique.

Next a one level of flattening is executed and the expression is rearranged to the form with

all allowed literals factorized. Below we will illustrate the expansion on an example of a

function with ternary variables.

Ezample 4.1.

1. Given is a list ARESOP of disjoint cubes corresponding to expression:

X°'IY ° @ XXY 1'2 @ X2y _.

2. One has to find expansion with respect to variable X, with allowed literals 1, X °'I,

X °'2. The result of conversion (substitution) is: X°,IY ° @ (1 (9 X°'2)Y L2 @ (1 @

X°.l)y 2.

3. After flattening: X°'IY ° _ ya,2 _ Xo,2yl,2 @ y2 @ XO,ly2.

4. After factorizing the allowed literals: X°"(Y ° _B y2) (B X°'2(Y ''_) (B I(Y ''2 (BY2).

In the next stage similar expansion is done for variable Y. The expansion uses the

respective expanded polarity matrix EPM(Y).

Two computer-oriented efficient algorithms to perform this kind of expansion for flat

forms are given in [29,30,31] and illustrated with examples there. They do not use flattening

and factorizing, however, they cannot be also applied to create tree expansions.

Below we will introduce the basic concept of EXOR type Shannon expansion for the

my logic. As it is well-known, the Shannon expansion theorem has been generalized by

Rudell [24] for the mv logic. His expansion is of AND-OR type, to be used for my SOP

synthesis. On the other hand, three generalizations of Shannon theorem for Boolean rings

are known [4,9] (rules 5,6 and 7 in section 2). Here we will formulate an expansion that

generalizes both Rudell's and Davio's expansions: it is in terms of AND-EXOR expansion,

and it is for my logic.



3rd NASA Symposium on VLSI Design 1991 11.3.9

It can be derived that the orthogonal expansion of function f with respect to multiple-

valued input variable Xi of expanded polarity matrix EPM(Xi) can be expressed by the

following formula:

f = • f_,_, x, s_ (lO)
Xi si e EPM(XI)

where the values of fxs¢ are calculated as fonows: [_,s,] r = [/x,,,]T [NP]-';

[fxS_] is a vector of single-llteral orthogonal expansions of literal x_sJ, j = 0, ...,p -

1; [fxi.i] is a vector of single-literal standard expansions of single-value literal

Xi, (Xi = j), j = O,...,p- 1; [A] T means matrix [A] transpose; [A]-'

means matrix [A] inverse; [NP] is a normalized polarity matrix, which relates polari-

ties of multiple-valued input literals to single-value literals.

Instead of proving this expansion for a general case we will sketch the proof using

another example.

Ezample ,{.2. The expanded polarity matrix for ternary variable Xi is:

[xo][1011EPM(X,) = X °,1 = 1 1 0 (11)
X _ 0 0 1

According to formula 10 the orthogonal expansion for EPM(Xi) is:

f : fx, o,, X_ °'_ @ /x,o,, Xi °'1 _ fx,' Xi 2. (12)

We will derive the values of fx_o,2 , fx,o., , and fx,'. It holds for non-overlapping llterals

[24]: f = fX,,o Xi ° + fx,,l Xi _ + fx,,2 Xi 2 which, with respect to the disjointness

ofXi', X{, s_r, gives: f = fX_,o Xi ° @ fx_,x Xi 1 • fx_,a Xi 2. Then:

f = fX,,ox, ° • fx,,, x? • /x,,a x_ _ = fx, o,, x, °,_ • fx, o,, x, °'_ • fx,, x, _- (13)

(14)f = (fx, o,, x, ° • Ix, o,, x?) • (Ix,o,,x_° • fx,°,, x?) • fx,, x? =

= (fxi °,' (_ fxi 0,' )Xi 0 _ fxlo, , Xi I e (fx, o,a _) Ix, a)Xl 2

In matrix form, the equation 13 becomes:

ix0][fX,,o Ix,,, fx,,a ] x? : [/x,o,a Ix, o,, yx,a ] x, °,_
Xi 2 X_ _

The relation between the disjoint and non-disjoint literals is given be the equation:

Substituting

fXi,0

ix0] ix0]Xi °a = [NP] Xi 1 =

Xi 2 Xi _

16 to 15 one obtains:

Ix,,, /_,,a ] X,' = [Ix,°,' fx,o,,
Xi 2

1 0 1
1 1 0

0 0 1 1X?
Xi z

f xi a ]
1
1

0

0 1

1 0

0 1 xi° ]
Xi 2

(15)

(16)

(17)



11.3.10

;,From there:

[/x,0,2 /x,°., /x,, ] = [/x, 0 Ix,., /x,.2 ]

1 0 1

111 =
001

Formula 18 gives the values .fx_o,3 ,

-1

110

0 0 1

[ fX,.o fX,., fx,,, fX,.o fX,., fx,,, ]

fx, o,_ , and fx_2 to be substituted to formula

12 in order to calculate the orthogonal expansion (End of Ezample).

It can be easily checked by substituting respective expanded polarity matrices to for-

mula 10 that the expansions 5 - 7 and the RudeU's expansion are particular cases of

this new expansion. This method can be also easily generalized for incompletely specified

functions.

1. The orthogonal expansion applied in some restricted way to a multiple-valued input

ESOP creates a family of canonical tree expansions analogous to those for binary

logic. .... : _ :

2. Applying the expansion uniformly in a tree for a fixed order of expansion variables

of the same polarity one obtains the MIRGRM Trees that are the mv counterparts

of binary Single Polarity Reed-Muller Trees.

3. Applying the expansion uniformly in a tree for a fixed order of expansion variables

of various polarities one obtains the Multiple-Valued Kronecker Reed-Muller Trees

(MIKRM Trees) that are the mv counterparts of binary GRM Trees and Kronecker

Reed-Muller Trees.

4. Applying the expansion in a tree for a fixed order of expansion variables, but having

various variable polarities in different sub-expressions (sub-trees) one obtains the

Multiple- Valued Pseudo-Kronecker Reed-Muller Trees (MIPKRM Trees) that are the

mv counterparts of binary Pseudo-Kronecker Reed-Muller Trees.

5. Applying the expansion in a tree for all possible but fixed orders of expansion vari-

ables, and having various variable polarities in different sub-expressions (sub-trees)

one obtains the Multiple- Valued Quasi-Kronecker Reed-Muller Trees (MIQKRM Trees)

that are the mv counterparts of binary Quasi-Kronecker Reed-Muller Trees.

6. Applying the expansion in a tree for all possible orders of expansion variables, having

various orders in various sub-trees, and having various variable polarities in different

sub-expressions (sub-trees) one obtains a new family of canonical trees.

7. The method can be applied with little modification to multi-output functions: it

is applied to each function separately. The logically equivalent sub-trees are be

combined, which leads to DAG circuits. This transformation preserves the canonicity

of the tree circuits.



3rd NASA Symposium on VLSI Design 1991 11.3.11

8. The trees from all above new families of canonical trees can be flattened to respective

canonical mv forms. This leads to MIRGRM forms, MIKRM forms, MIPKRM forms,

MIQKRM forms, and new mv canonical forms, respectively.

A more detailed characteristics of the above expansions, new mv expansions and com-

puter algorithms to create them will be included in our forthcoming paper.

5 Conclusion

In this paper several well-known canonical forms have been generalized for the logic with

multiple-valued inputs. An Orthogonal Expansion Theorem has been also formulated,

which plays that fundamental a role in those expansions as one played by the Shannon

Theorem in inclusive logic and the three Boolean ring expansions for the binary forms.

Since the Shannon theorem has several important application in tautology, complementa-

tion, implicants generation and many other areas, and the ring expansions are fundamental

to EXOR circuits theories, we expect this theorem to play also a fundamental role in the

multiple-valued logic.

The reader must bear in mind that the expansions proposed here relate to trees and

not "fiat" forms. For instance, the GRM forms are independent on the order of variables,

but the respective GRM trees do depend on this order. Therefore, investigating expansions

with changing the order of variables has practical sense only for some types of expansions.

Since several expansions obtained by changing the order of variables produce the same

"flat" form, counting of several forms can be difficult, as already observed for Quasi-

Kronecker forms by Green [4]. It is even more so for our forms, where different orders of

variables in subtrees are possible.

References

[1] Ph.V. Besslich, "Efficient Computer Method for EXOR Logic Design", Proc. lEE,

Vol. 130, Part E, CDT, No. 6., pp. 203-206, 1983.

[2] D. Brand, T. Sasao, "On the Minimization of And-Exor Expressions", _$ FTC, pp. 1

- 9, 1990.

[3] R.K. Brayton, G.D. Hachtel,C.T. McMuUen, A.L. Sangiovanni-VincenteUl, Logic Min-

imization Algorithms for VLSI Synthesis, Kluwer Academic Publishers, 1984.

[4] P. Davio, J.P. Deschamps, A. Thayse, Discrete and Switching Functions. George and

McGraw-Hill, New York, 1978.

[5] E. Detjens, "FPGA Devices Require FPGA-specific Synthesis Tools", Computer De-

sign, p. 124, Nov 1990.



11.3.12

[6] H. Fujiwara, Logic Testing and Design for Testability, Computer System Series, The

MIT Press, 1986.

[7]

[8]

[9]

GOTHIC CRELLON, "The Beginners Guide to Programmable ASICs", 1990.

D. Green, Modern Logic Design, Electronic Systems Engineering Series, 1986.
: : - =

D. Green, :"Families of Reed-Muller Canonical Forms", Int. J. Electronics, Vol. 70,

No. 2, pp. 259-280, Jan. 91.

[10] M. HelliweU, M.A. Perkowsld, "A Fast Algorithm to Minimize Multi-Output Mixed-

Polarity Generalized Reed-Muller Forms", Proceedings o� Zbth ACM/IEEE De__i_n
:Automaton Conference, i98g:_Las_gas_p:p. 427 -: 4_: _

[11] K.L. godandapani, "A Note on Easily Testable Realizations for Lo$cM Functions",

: IEEE Trans. Cornp., Vol. C-23, pp. 332-333, 19741:7:, : =

[12] H. Land_anni_:Logic Synthesis at Sun:) !EEE conference pap er;:CH:2686 . 4 / 89 /

0000 / 0469, 1989.

[13] MONOLITIC MEMORIES, INC., "XOR PLDs Simplify Design of Counters and

Other Devices", EDN, May 28, 1987.

[14] A. Mukhophadhyay, G. Schmitz, "Minimization of Exclusive-OR and Logical Equiva-

lence Switching Circuits _, IEEE Trans. Gomp:, Voi. C-19, No. 2., pp. 132-140, Febru-

ary 19713.

[15] DIE. Muller, "Application of Boolean Algebra to Switching Circuit Design and to

Error Detection", IRE Trans. Electron. Comp., Vol EC-3, pp. 6-12, September 1954.

[16] G. Papakonstantinou, "Minimization of modulo-2 sum of products", IEEE Trans. on

Computers, Vol. C-28, pp. 163-167, February 1979.

[17] M.A. Perkowski, M. Chrzanowska-Jeske, "An Exact Algorithm to Minimize Mixed-

Ra_ Exclusive Sums of Products for Incompletely Specified Boolean Functions",

Proc. International Symposium on Circuits and Systems, May 1990.

[18] M.A. Perkowski, M. HelliweU, P. Wu, "Minimization of Multiple-Valued Input Multi-

Output Mixed-Radix Exclusive Sums of Products for Incompletely Specified Boolean

Functions", Proc. IEEE Inter. Syrup. Multiple Valued Logic, Guangzhou, People's

Republic of China, May 1989, pp. 256-263.

[19] M.A. Perkowski, P. Dysko, B.J. Falkowski, "Two Learning Methods for a Tree-Search

Combinatorial Optimizer", Proceedings of IEEE International Phoeniz Conference on

Computers and Communication, Scottsdale, Arizona, March 1990.

[20] M.A. Perkowski, M. Chrzanowska-Jeske, "Tree Search Algorithms to Find Exact

ESOP Forms", PSU Report, 199!.

=
|

i

@



3rd NASA Symposium on VLSI Design 1991 11.3.13

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D.K. Pradhan, Fault-Tolerant Computing. Theory and Techniques. Vol. L, Prentice-

Hall, 1987.

I.S. Reed, "A Class of Multiple-Error-Correcting Codes and Their Decoding Scheme",

IRE Trans. Inf. Th., Vol. PGIT-4, pp. 38-49, 1954.

S.M. Reddy, "Easy testable realizations for logic functions", IEEE Trans. Comput.,

Vol. C-21, pp. 1183 - 1188, 1972.

R. RudeU, "Multiple-Valued Logic Minimization for PLA Synthesis", Master Thesis,

University of California, Berkeley, June 1986.

T. Sasao, H. Terada, "Multiple-Valued Logic and the Design of Programmable Logic

Arrays with Decoders", Proc. of 9th International Symposium on Multiple-Valued

Logic, Bath, England, pp. 27 - 37, 1979.

T. Sasao, P. Besslich, "On the Complexity of MOD-2 Sum PLA", Institute of Elec-

tronics and Communication Engineers of Japan, FTS86-17, pp. 1-8, Nov. 17, 1986.

T. Sasao, "EXMIN: A Simplification Algorithm for Exclusive-OR-Sum-of-Products

Expressions for Multiple-Valued Input Two-Valued Output Functions", Proc. of _Oth

Int. Syrup. on Multiple-Valued Logic, pp. 128-135, May 1990.

J.M. Saul, "An Improved Algorithm for the Minimization of Mixed Polarity Reed-

Muller Representations", Proc. ICCD'90, pp. 372-375, Sept. 1990.

I. Schaefer, "An Effective Cube Comparison Method for Discrete Spectral Transfor-

mations of Logic Functions", M. Sc., Thesis, May 1990.

[30] I. Schaefer, M.A. Perkowski, "Multiple-Valued Input Generalized Reed-Muller

Forms", Proc. of the ISMVL-gI, Victoria, B.C., Canada, May 1991.

[31] I. Schaefer, M.A. Perkowski, "Multiple-Valued Input Generalized Reed-Muller

Forms", submitted to IEE Journal, May 1991.

[32] SIGNETICS, PLD Data Manual, Signetics' Approach to Logic Flexibility for the

'80's", 1986.

[33] XILINX, Inc., "The Programmable Gate Array Data Book", 1989.



=_



3rd NASA Symposium on VLSI Design 1991

N94-13376
12.1.1

Asynchronous Sequential Circuit Design
Using Pass Transistor Iterative Logic Arrays

M. N. Liu, G. K. Maki and S. R. Whitaker

NASA Engineering Research Center

for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract - The Iterative Logic Array (ILA) is introduced as a new architecture

for asynchronous sequential circuits. This is the first ILA architecture for

sequential circuits reported in the literature. The ILA architecture produces

a very regular circuit structure. Moreover, it is immune to both 1-1 and 0-0

crossovers and is free of hazards. This paper also presents a new critical race

free STT state assignment which produces a simple form of design equations

that greatly simplifies the ILA realizations.

1 Introduction

A major goal of modern Very Large Scale Integrated (VLSI) design is to produce a structure

that consists of similar, if not identical, modules. With such a structure only one module

needs to be designed and then can be replicated to realize the final circuit. Very few

design procedures have been advanced for sequential circuits that produce structures that

are easily realized for VLSI implementations.

This paper introduces an Iterative Logic Array (ILA) architecture for the realization of

asynchronous sequential circuits. With the ILA architecture, an asynchronous sequential

circuit can be built in a very regular form with a single type of ILA module as a build-

ing block. Furthermore, the ILA asynchronous circuits have some unique features, such

as immunity to both 1-1 overlapping and 0-0 crossing, tolerant of function hazards and

immunity to input bounce. The fundamental mode operation is still required in the ILA

asynchronous sequential circuits.

To further simplify the circuit of ILA module, a new state assignment has been devel-

oped to generate a new form of design equations (the simple term equation). In the simple

term design equations, each coefficient is simply a state variable or a constant, instead

of the random sum-of-product expression found in a traditional design equation. That

simplifies the basic ILA module to a simple pass logic multiplexer.

2 ILA Architecture

Iterative Logic Arrays (ILA) has been described in the literature for quite some time [1,2].

An ILA circuit consists of an array of identical cells. Generally, as shown in Figure 1, each

ILA cell contains two sets of input signals. One set of inputs are applied in parallel, while



12.1.2

Serial t_
Input Cell i

Parallel Input

-i

Cell 2

I
t Serial

: t Output
i Cell n

• ,!
! I

Figure i: A slice of ILA circuit

/1 II
Present state Next state ! /
output output r---_--_ ...... r

...I _ulter L. J lQ ^, . i , ,I

- ] dF , ,,o i mux _" "I

State Variables - ........ 0 .... , L

/
I

...... : ...... ,
s sN ...... s SN o A,

I !

I !

I !

II I I

I ...... ii k. ........ i[__ _,1

I I
I I

Figure 2: The overail ILA architecture

the othersetpf inputs are drive n by adjacent cells. Signals normally propagate in only

one direction between cells, and outputs are derived only from the serial outputs of the

last cell. This paper presents an ILA architecture for sequential circuits in which the next

state of each state variable is generated by a slice of concatenated ILA cells. A sequential

network is then constructed by placing the ILA slices side by side. The function of a flow

table is implemented by interconnecting ILA cells and the input states.

The basic cell of an ILA sequential network consists of a 2-to-1 multiplexer (MUX) and

a next state forming logic. A MUX cell has a select llne S, its complement _ and two data

inputs I0 and 11, such that Q - S •/1 + s • I0.

The simplest way to implement the MUX function is to use a pass transistor circuit.

Basically, the pass transistor MUX, excluding level restoration logic, is a module of two

pass transistors, which functions as two simple switches. Design considerations, such as

level restoration, are assumed to be handled by the output buffers. The circuit design

considerations have been discussed in [3,4,5].

The overall architecture for the ILA sequential circuit is shown in Figure 2 which

implements the next state equation

Y_= f,1/, + f,2G +... + £,/,. (1)



3rd NASA Symposium on VLSI Design 1991 12.1.3

Theorem 1 The architecture depicted in Figure _ is a proper model for an asynchronous

sequential circuit.

Proof: It is assumed that an STT assignment is used and the logic equations are defined

in Equation 1. Let the present input be Ip, which means that only MUX cell p passes

the next logic state lip to the buffer. Therefore, Y; = fipIp for each yl. When input Iq is

present (Ip = 0, Iq = 1), the only MUX that passes next logic state is cell q. Therefore

Yi = fiqIq for each yi. Clearly, the architecture realizes Equation 1. []

The present state is depicted by the state variables and is fed back to each ILA cell.

The logic for each state variable Yi consists of n ILA cells as defined in Figure 2. The set

of n cells is described as a slice that realizes a next state variable. Referring to Figure 2,

all ILA cells that are driven by the same input state It belong to the same level. With n

input states and m state variables, there are n levels of ILA cells and m slices.

3 Design Procedure for Asynchronous ILA Sequen-
tial Network

As a general architecture, the ILA architecture can be used to realize the asynchronous

design equations of any STT assignment. This section compares the ILA circuits for

traditional STT assignments and proposes a new state assignment which minimizes the

next state forming logic in the ILA cell.

3.1 Simple Term Design Equations

The set of next state equations provides a mathematical model of a sequential circuit. For

example, the design equations using Liu's assignment for Table 1 are:

Yx = y, I1 + (y,_ + y2y4)I2 + _-_I3

Y2 = ylI_ + y212 + VzG

Y3 = 0 + KiI2 + V313

]I4 = 0 + y2y412 + y313

If an ILA network is utilized to implement each next state equation, then the next state

forming logic flp in Equation 1 would be a random logic function in sum of products form.

For example, f12 would be ylg-_ + y2y4. A circuit to realize the next state forming logic is

simply combinational logic and can be formed from NAND gates, NOR gates or from pass
transistors.

Some research has been conducted to simplify the next state logic. One such effort

was made by Chung-jen Tan [6]. The Tan assignment will produce equations in a form of

so called simple product term equation in which each coefficient fir, is simplified to an OR

expression, instead of a random sum of products expression.

With traditional state assignments, each fir, term in resulting design equations is a

function of the partitioning variables of input Ir, [7] and the number of partitioning variables



12.1.4

A

13

C

D

E

F

G

H

/1 I_ /3 Yl Y2 y3 y4

A B C 0 0 0 0

A B G 0 0 1 0

D E C 1 0 0 0

D F C 1 1 0 0

D E G 1 0 1 0

A F C 0 1 0 0

A H G 0 1 1 1

D H C 1 1 0 1

Table 1: A flow table and traditional Liu's assignment.

is equal to the number of k-sets in Ip, the maximum number of inputs to f_p logic is equal

to the number of k-sets. Therefore, _ completely regular ILA circuit for a traditional

asslgnmentw0u!d contain a k-input aext state forming logic for each flp where k="number

of k-sets in input Iv", =:

A goal of the new design procedure is to minimize the amount oflaardwarerequired by

the f/v logic. Physically, the minimal form of flp logic is a wire. The design equation in

which all f_p terms are in minimum logic is called a simple term equation.

Definition 1 A Jimple term nezt Jtate equation is a design equation in which each lip

coet_cient is a jingle state variable (or its complement) or a constant.

In a simple term equation, each coefficient depends on at most one state variable.

This feature has significant impact on the hardware implementation. With a simple term

equation, only a wire is required to generate each fly coefficient. With a procedure discussed

in later sections, the simple term equations for Table 1 can be derived as follows,

Yl -----YlI1 q-y3]'2q-y-2Z3

Y2 "-- I1 +y412+y213

Y3 = I_ +y312+0

Y4 = _--iIx 4-y412+_"_I3

As all coefficients are simple terms, no extra logic is required to generate each flp.

3.2 New State Assignment

In this research, partition algebra is used to derive simple term equations and synthesize

asynchronous circuits. The new state assignment, called r/ assignment, is proposed to

produce the simple term design equations. A relationship between 77v partitions and fip

coefficients has been presented in the literature IS]. Theorem 2 in [8] shows part of the

discovery and has been used to analyze state assignments in predicting hardware.

Theorem 2 (1) If _?_ rj, then flp = Yl or y--]. (f2) If all the states of rl_ are in one block,

then lip = 0 or I.



3rd NASA Symposium on VLSI Design 1991 12.1.5

If all fly of the design equations meet the conditions of Theorem 2, then the coefficients

will be simple terms. A sufficient condition of u-partitions for simple term f_p is listed in

Corollary 1.

Corollary 1 If all r/_ partitions satisfy one of the following conditions:

i. r/f = rj

e. = {s; ¢}

s. r/f= {¢;s}

then the design will yield simple terms, where S is a set of all flow table states.

Proofi The proof follows directly from satisfying Theorem 2.
[]

Most STT assignments do not meet the conditions of Corollary 1. However, if an

P under input Ip where r/jassignment can be generated such that for each r/-partition r/j P

does not satisfy the conditions from Corollary 1, a new r-partition rk will be created

where r_ = r/_ to allow fjp = Yk and produce a simple term equation for Yj.

For example, the flow table shown in Table 1 has eight k-sets:

{ABFG}, {AB}, {ACDFH}, {CDEH}, {CE}, {DF}, (BEG}, {GH}.

A set of r-partitions can be formed to partition each k-set from the rest of states and the

results are T1 through Vs in Table 2 (a). Then from the corresponding r/-partitions, it can

be found that some r/-partitions, such as r/r , 2 2r/z, r/4 and r/_, are not equal to any r-partltions

or a constant. A new T-partition needs to be formed for each of r/-partitions which do

not meet the conditions of Corollary 1. For each newly created T-partition, corresponding

77-partitions need to be formed. The new r-partitions may generate new r/-partitions which

do not meet any conditions of Corollary 1. Additional T-partitions would then be required.

The partitioning procedure will continue until the conditions of Corollary 1 are met. In

the case of assignment for Table 1, Tg,rlO, Tn,T12 are formed which in turn generate 12

corresponding r/ partitions. The results are shown in Table 2 where all r/-partitions are

equal to a r-partition or a constant.

Simple term equations can be generated once all r/-partitions satisfy Corollary 1. In

most cases, however, more T-partitions (state variables) than necessary have been intro-

duced and can be removed without jeopardizing the simple term feature.

Definition 2 A T-partition ri is redundant if Ti and r/_ for alI I r, can be eliminated while the

resulting nezt state equations remain the simple term equations and the state assignment

remains a critical race free STT assignment.

Theorem 3 In the set of r.partitions resulting from the 7? assignment, if a Ti, which

partitions a k-set Kt in Ip from other states is not equal to any r/_ or its logical complement,

where i _ j, then vi is redundant.



12.1.6

r_ = {ABFG;CDEH}

T4 = {CDEH;ABFG}

T7 = {BEG;ACDFH}

rl0 = {ABDF; CEGH}

U_ = {ABFG;CDEH}

U_ = {ABFG;CDEH}

U_ = {ABFGCDEH;-}

7714= {CDEH;ABFG}

_7_ = {-;ABFGCDEH}

U1 = {CDEH;ABFG}

U_ = {-;ABFGCDEH}

Us_ = {-; ABFGCDEH}

U_ = {ABFG; CDEH}

U_o = {ABCDEFGH;-}

U_I = {-;ABCDEFGH}

U_2 -- {CDEH; ABFG}

r2 = {AB; CDEFGH}

_-5= {CE;ABDFGH}

rs = {GH; ABCDEF}

rn = {CEGH; ABDF}

(a) "r-partitions

U_ = {ABDF;CEGH}

U_ = {AB;CDEFGH}

ri_ = {DFGH;ABCE}

71_ = {CEGH;ABDF}

U_ = {CE;ABDFGH}

U_ = {DF;ABCEGH}

7727= {ABCE; DFGH}

rl_ = {GH;ABCDEF}

rl_ = {ABCE;DFGH}

7721o= {ABDFi CEGH}

U_ = {CEGH;ABDF}

U_2 = {DFGH; ABCE}

(b) q-partitions

r3 = {ACDFH;BEG}

r6 = {DF; ABCEGH}

T9 = {ABCE; DFGH}

"r,2 = {DFGH; ABCE}

U_ = {BEG; ACDFH}

7723= {-; ABCDEFGH}

U33= {ACDFH; BEG}

7734= {ACDFH; BEG}

U_ = {ACDFH; BEG}

773 = {-;ABCDEFGH}

_ = {BEG; ACDFH}

7738= {BEG; ACDFH}

773 = {ACDFH; BEG}

U_0 = {-; ABCDEFGH}

U_, = {ABCDEFGH;-}

U_2 = {BEG;ACDFH}

Table 2: The r and 77 partitions

Proof: If the k-set K, in I v is the left block of _'_ and the v_ is not equal to any U_ or

its logical complement, for all i # j, then for every Iq, q # p, there must exist a k-set Kk

under I v in the right block of _'_ _such t_at the stable state o_f Kt and the stable state of Kk

are in the same k-set in Iq. Hence the k-set Kt does not need to be partiti0ned from k-set

Kk for the input transition I v to Iq. Moreover, the partitioning variable y_ is not needed

to generate any simple term e_uation _. Therefore, _'_isredundant. .....

[]

For example, in Table 2, "r2,vs,'re and _'s do not appear in q-partition set except for

U2 _2 _2 and Us2. Those _'-partitions are redundant according to Theorem 3. Another way2,115,q6, ...... :

of looking at this is that y_ only appears in the equation for Y2 and no other - same for yb,

y_ and ys. Therefore, they are redundant.

Theorem 4 If v_ is a logical complement of Tj, then yi can be replaced by _-] in all design

equations. ..........

Proof: If vl is the logical complement of vj, then ri and l"j partition the same k-sets.

Only one of them is needed to meet the partitioning condition for a critical race free STT

assignment. Moreover, according to the Rule 2 in Theorem 7, all coefficients where fkv = y;

can be replaced by fkv = Y"7"

[]



3rd NASA Symposium on VLSI Design 1991 12.1.7

rl = {ABFG;CDEH} ra = {ACDFH;BEG}

rio = {ABDF; CEGH} r12 = {DFGH; ABCE}

(a) v-partitions

= rl '7[ = = r7

= 1 = Vl0 = 0

(b) y-partitions

Table 3: The reduced r and 77partitions

Theorem 4 provides the condition for removing another type of redundancy. For ex-

ample, r4 in Table 2 is the logical complement of rl. Therefore, equation Y4 is redundant

equation and all coefficients Y4 in the simple term equations can be replaced by _. Sim-

ilarly, equation Y_ is also a redundant equation and all coefficients Yr in the simple term

equations can be replaced by _-_.

Theorem 4 does not specify which r-partition should be removed if r_ is a logical com-

plement of vj. The final result may be quite different if zl or rj is removed because removing

such a v-partltlon may make more r-partitions become redundant with the condition of

Theorem 3. In order to obtain a better result, the redundancy specified by Theorem 3

first needs to be removed. That will allow the designer to make a better choice by check-

ing fewer r and T/-partitions. For example, r9 and rn become redundant partitions after

removing v4, Zr and corresponding r/-partitlons 7/_, 7?g,Vp = 1,2, 3.

By eliminating redundant v-partltions and 7/-partitions, the number of partitions is

significantly reduced. In the example above, 8 out of 12 T partitions are removed. Table 3

(a) and (b) show the results.

By using Theorem 3, two stable states under the same input state may have an identical

state assignment if they have the same next states under all inputs. To have identical

assignment for two stable states is equivalent to merge two corresponding rows in the flow

table. However, if the outputs associated with these two stable states are not compatible,

such a merging is invalid. A unique state has to be assigned to each stable state so that

two outputs can be distinguished.

A partitioning chart is introduced to facilitate state assignment reduction and avoid

such invalid merging. The chart has intersection for each pair of k-sets in an input. For

each r-partition ri introduced by the state assignment, rl will be placed in the intersec-

tions where a pair of k-sets are partitioned by r_. When a rj is removed by the state

assignment reduction procedure in accordance with Theorem 3, rj must be removed from

all intersections in the partitioning chart.

If a blank intersection in a partitioning chart was left once r i was removed, then the

compatibility of two corresponding rows in the flow table would have to be checked. If



i_..i.8

_D_H

CE

DF

GH

BEG

7-I

rl "I"10

9"12 rlo r12

r12 rlO

ABFG AB CE DF ACDFH

Figure 3: The partitioning chart for the final r partitions

two outputs are not compatible, rj should not be removed even though rj is redundant

according to Theorem 3. The Partitioning char _ for_the final 77 assignment is shown in

Figure 3_er_ iS at least one r-par{_ion at each intersection:

The following procedure formalizes the r/assignment assignment.

Procedure i r/ assignment generation:

Step i. Select an initial set of T-partition ri that partition each k-set Ki .from _he rest of

states. Create a partitioning chart for k.sets.

Step 2. Generate all rl-partitions _7_ for each input IF.

Step 3. For any _ that do not meet the conditions of Corollary I, generate a new r.

partition rk such that rk = rl_. Add r_, to the partitioning chart. Return to step _.

The state assignment process is complete when every rl_ satisfies the Conditions of

Corollary 1.

Step 4. Remo_e each r-partition n that meets the conditions of Theorem $ if there are no

merging problem in the partitioning chart by removing ri. Also, ]or each ri removed,

remove _i under all iF. Repeat Step 4 until all such ri have been eliminated.

Step 5. For each pair of r-partitions n and U that are logical complements, remove ri

and _7.partitions rl_ under all IF. Once such a n is removed, return to Step 4.

Since Procedure 1 involves iterations of step 2 and step 3, it is useful to know if the

number of r-partltlons is finite. The following theorem shows closure of Procedure 1.

"rheoi-erla 5 The nu,,d,er ,,[ r.partitions nccdcd to generate anll arbitrarlt _ a.,signrncni i,

finite.



3rd NASA Symposium on VLS[ Design 1991 12.1.9

A

B

C

D

E D

F A

G A

H D

/1 Is /3 yl y3 yl0 Y12

A B C 1 1 1 0

A B G 1 0 1 0

D E C 0 1 0 0

D F C 0 1 1 1

E G 0 0 0 0

F C 1 1 1 1

H G 1 0 0 1

H C 0 1 0 1

Table 4: The result of 7/assignment

Proof: If there are k k-sets in a column of arp, the maximum number of v-partitions that

could be generated is

(0_) + (_) + (I) +"" + (_) = 2k.

This is finite.

[]

Corollary 2 A simple term 7? assignment ezists.

Proof-" A flow table must have at least one input state with more than one k-set_ otherwise

the circuit is purely combinational. With k k-set (k >_ 2), Theorem 5 shows that the

maximum of v-partitions is 2 k. Therefore, an assignment exists because a set of v-partltions

can be constructed.

[]

Theorem 6 The r1 assignment is a valid STT assignment.

Proof: A Liu assignment will produce v-partitions which partition the k-sets. The r-

partitions in this assignment consists of two sets of partitions. The first consists of the
p

initial set of r-partitlons that partitions individual k-sets. The second set consists of the

v-partitions that are created from r/-partltions that do not meet conditions of Corollary 1.

Hence, both type of v-partltlons are elements of a valid Liu assignment and therefore the

overall assignment meets the conditions of an STT assignment.

[]

The result of r/assignment for flow table Table 1 is given in Table 4.

3.3 Design Equation Generation

With the 7/assignment, the next design step is to associate a unique state variable Yl with

each r-partition vi and determine each flp term.

Theorem _' The nezt state equations can be derived from the rI-partitions with the follow-

ing roles:



!2,1.10

1. If rl_ = "rj, then lip = Yi"

_.. If the states in the left block of rl_ are the same as states in the right block of rj

and vice versa, then fir, = Y"].

S. I/art the states of rl_ are in the left block, then lip = 1.

4. If all the states of ri_ are in the right block, then lip = O.

Proof; The proof follows directly from Theorem 2 since the 77 assignment assigns state

variable yj = 1 to states in the left block and yj = 0 to states in the right block of r-

partition rj.
[]

The following example gives the next state equations by applying Theorem 7 to the

result of r/assignment in Table 3.

Example 1 Applying the revised conditions of Theorem 7 to each y-partition rl_ in Table $,

the nezt state equations can be derived as follows:

YI = yl Il + ylOI2+_I3
Y3 = 11 +y12I_+y313

Y_o=/1 +y1012+0
Y_= _I, + yx212+gSI3

: : : _ ...... - : -_z: 7 £: -

_T](e _assignment guarantees:to produce the simple:term equations:in which all co-

efficients are single variables or constants. The general form for the next state equation
is

p=l ....

It has been shown in [10] that this equation can be represented as a pass logic expression.

Since only one Ip = 1 at a time and the case when all It = 0 is an undefined situation in

an asynchronous flow table, an ILA network will let y; be passed to Y/if the term In(yi) is

added. The equation of Yi then be_o_es ........................

r, = z_(/,,) + Y,(... 6(/,,) + _(. ••(r.(/,.) + _(v,)...). (2)

The advantage of this equation is to allow Yi to maintain the same state when all I; = 0,

which can happen during an input transition. For exampie' Hue Simple term equation for

Y1 in Example 1 is

Y1 = Vii1 + yxoI_ + 9-_Iz

Putting this into the form of Equation 2, the expression can then be converted into

r, = z,(yl) + _(z_(ya0)+ E(z_(_) + G(yl)))

Similarly, all other equations can be converted to the pass logic expressions in the same

way. The results are as follows:

_=

L

--=
==

r



3rd NASA Symposium on VLSI Design 1991 12.1.11

Y,

--3
m

Yl -3 Yl0

-3

w

/1 /, /2 /2

Figure 4: ILA realization of state variable Y1

Y, = _,(y,)+T,(_(y,o)+T_(z_(_)+T_(y,)))
Y_= _1(_)+T,(z_(yi_)+T_(x_(y_)+T_(y_)))
Y10=/i(1) -FTx(12(ylo)-FT2(/3(0)+_33(Y10)))
Y_:=I,(9-;)+T_(I:(y,:)+T:(I3(9-_)+T3(yI2))).

Obviously, the next state logic/ip is minimized to a wire if the set of next state equations

are all simple term equations. It is straightforward then to map the design equations to

an ILA network. Figure 4 shows an ILA realization of state variable Y1.

4 Input and Hazard Characteristics

In addition to the regularity of the ILA network with the ? assignment, an ILA realization

has other features such as (1) immunity to input 1-1 overlapping and 0-0 crossing, (2)

immunity to input bounce while 1-1 overlapping is not present, and (3) free of transition

path hazards and input state transition hazards.

Potential conflicts arise in asynchronous sequential networks when more than one input

state is present at a time (1-1 overlapping), or when none of the input states are active

(0-0 crossing). The overlapping and crossing situations occur because two input states

rarely switch at exactly the same time due to differences in delay through forming logic.

Most design procedures avoid such uncertainties by setting a constraint either to forbid

1-1 overlapping or to forbid 0-0 crossing of input states. Another form of hazard on an

input signal which may cause the circuit to malfunction is the dynamic hazard when input

transitions.

Theorem 8 The ILA architecture tolerates 1-1 input overlapping.

Proofi In Equation 2, assume the input state Ip have higher priority relative to input

state Iq. In the other words, Ip is the control variable of an ILA ceil which is closer to the

output than the ILA cell with the control variable Iq. If both Ip and Iq are asserted 1,

then Y_ will assume value specified by f;t, rather than flq.

In the case where the input switches from Ij, to I¢, when I v is 1, it passes f{,, to Y_ and

meanwhile cuts off the path of flq to Y_, no matter if Iq is set to 1 or 0. With such an



12.1.12

architecture, the 1-1 overlapping of input Ip and/_ has the same effect on the output Y/

as Ip = 1, I_ = 0.

In the case where the input switches from Iq to Ip, when Iq - 1, all Y_ are determined

by the f{q values which _e propagated through the ILA. Once Ip = 1, the f_p values are

passed through the ILA independent of whether I_ is 0 or 1. Hence the circuit assumes

the proper next state value.

[]

For example, in Figure 4, if/1 and/2 are active, the circuit for all next state variables

will be under the control of/1 only, and Y1 will assume the value of yl. ylo can be passed

to Y1 only if I1 -- 0 while I2 is active. Once/1 is set to 1 again, the value of y,0 at Y, will

become Yl immediately (assuming _ is set to 0 simultaneously).

The 0-0 crossing happens when all input states are 0. Let the input change from Ip to

Iq. If input Ip goes to 0 before Iq g0_es to-l, there will be a period that all input fines are 0.

In traditional design, the outputs of the design equations could assume an undeterminant

state when all inputs are 0. The ILA architecture solves the problem by providing a path

for each state variable to pass yl to Yi. When all inputs are 0, it allows Yi to maintain its

current value yl.

Again, Figure 4 can be used to show the feature of 0-0 crossing tolerance. For example,

assuming the input transition is from I2 to /3, when/2 -- 1, yl0 is passed to I"1, and yl

is fed back into the last ILA cell under/3. Once the network is stable, the level of yl0 is

passed to Y1. When/2 is set to 0, the path provided by/1, /2 and/3 will still maintain

the level of Y1 at the current value of yl. The output of the network remains unchanged

during the period when all inputs are 0 until/3 is set to 1. Then a new level of y7 will be

passed to Y1 and the network assumes a new state.

An input bounce can be considered a dynamic hazard during the transition of input

states. With the ability to tolerate input bounce, the ILA network allows extra input

transitions to occur before the circuit is stablized. However, the input bounce can be

tolerated only if it is not necessary to also tolerate 1-1 overlapping. If an input Iq bounce

occurs when two input states Ip and Iq are overlapping, an ambiguity is created regarding

the interpretation of the transition; it could be one transition from Ip to Iq or three

transitions from Ip to Iq then to Ip back to I_. In order to avoid the ambiguity, it is

assumed that during the input state transition from Ip to Iq the circuit tolerates either the

bounce condition or the 1-1 overlapping, but not both.

Theorem 9 For the simple term equations derived from an r1 assignment, all partitioning

variables under input Ip do not change as the circuit transitions from one state to another

under Ip.

Proof: The r/assignment produces the simple term equations of the form

Yi " + ydp +""

where yi is the partitioning variable of Ip. yl is the only partitioning variable for all

transition paths in the r/assignment. According to Theorem 2 in [7], yl will not change in

z

=

E

L



3rd NASA Symposium on VLSI Design 1991 12.1.13

yj 11 12

1 0 SilSl1 1 sj sj

Buffer

_D Q

Figure 5: A traditional realization of a partial flow table

any transition under Ip. Hence, the partitioning variables of the simple term equations do

not change during the input transitions.
[]

From Theorem 9, the partitioning variables do not change when an input signal Ip

undergoes a bounce. In the case that a dynamic hazard presents when Ip transitions from

0 to 1, the circuit begins to transition to the new state when Ip goes to 1. Meanwhile, the

partitioning variables of Ip remain stable. Since the partitioning variables determine all

lip values [7] and since the partitioning variables are uneffected by the input bounce, the

circuit will assume the proper next state value when Ip is stablized.

In the case that a dynamic hazard presents when Ip transitions from 1 to 0, the present

state is simply passed to the next state once Ip goes to 0, as this represents a 0-0 crossover

condition. The circuit does not transition. When Ip returns to 1 on the bounce condition,

again from Theorem 9, there will be no transition in partitioning next state variables.

Since the circuit is a function only of the partitioning variables [7], output of the circuit

remains unchanged.

A critical race free asynchronous sequential network may still malfunction due to un-

wanted switching transients in the combinational circuit. A transition path hazard is one

that is present within the states of a transition path. The simple term equations for the
next state variables have the form

= ... + ydp + ...

where yi is the partitioning variable of/'p. From Theorem 9, partition variable yl does

not change as the circuit transitions from one state to another in Ip. In general, since the

partitioning variables of the simple term equations do not change during the transition,

it is impossible for a hazard of any kind to occur. Therefore, there cannot be any static,

dynamic and function hazards that occur during the transition between unstable and stable
states.

A circuit free of static and dynamic hazard may have a hazard problem caused by the

change of more than one variable in the design equation. One type of such multi-variable

change hazard is a function hazard. The problem can be illustrated by the partial flow



12.1.14

table in Figure 5 where design equations for :I//, Yj and a schematic for Yi are shown. A

hazard exists when an input changes from/'2 to/i. If the delay of AND gate-1 is longer

than the total delays of AND gate-2, the OR gate and the buffer, then the output of gate-1

will remain 0 after the input changes to il = 1 and/2 = 0. That will in turn cause yl

to remain at 0 and lock the output of gate-1 to 0. The result is that state variables yiyj

are set to 00 instead of intendeed va]ue 10. Moreover, the circuit is locked up in the wrong

state until a reset line is provided.

The a problem occurs in a traditional design where a slow gate has the same effect as

a 0-0 crossover. Input I n = 0 will set the product term to 0. The ILA circuit solves the

problem by maintaining the same state when all inputs go to 0. Also, the I-i overlapping

problem which may arise in the traditional design due to a slow gate can be tolerated

by iLA circuit. The 1-1 overlapping and 0-0 crossover properties of the ILA architecture

prevents the circuit from malfunction due to such input state transition hazards.

References

ill C. Roth, Fundamentah of Logic Design, 3rd Ed,. St. Paul, Minn., West Publishing,

1985.

[2] D. Givone, Introduction to Switching Circuit Theory, McGraw-Hill, Inc., 1970.

[3] S. Whitaker, "Design of Asynchronous Sequential Circuits Using Pass transistors,"

Ph.D Dissertation, University 0fIdaho, Feb: 1988. =..............

[4] S. K. Gopaiakrishnan and G. K. Maki, "VLSI Asynchronous Sequential Circuit De-

sign", ICCD, Sept, 1990, pp. 238-242.

[5] S. Whitaker and G. Maki, aPass'Transistor Asynchronous Sequential Circuits", IEEE

JSSC, Vol.24, No.l, Feb. 1989, pp. 71-78.

[6] C. Tan, "State Assignments for Asynchronous Sequential Machines", IEEE Transac-

tions on Computers, Vol. C-20, No. 4, April 1971, pp. 382-391.

[7] S. Gopalakrishnan, G. Kim and G. Maki, "Implications of Tracey's Theorem to Asyn-

chronous Sequential Circuit Design", The 2nd NASA SERC Symposium on VLSI

Design, November, 1990, pp. 9.1.1-9.I.11.

[8] G. Maki, D.Sawin and B. Jeng, "improved State Assignment Selection Tests", IEEE

Transactions on Computer, Dec. 1972, pp.1443-1449.

[9] J. Tracey, "Internal State Assignment for Asynchronous Sequential Machines", IEEE

Transactions on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560.

[10] S. K. Gopalakrishnan, "Design of VLSI Asynchronous Sequential Machines," Ph.D

Dissertation, Univers|ty of Idaho, December, 1989.



3rd NASA Symposium on VLSI Design 1991

",T94- 18 377
12.2.1

Pulse Mode VLSI Asynchronous Circuits

Q. Chen and G. Maki

NASA Space Engineering Research Center

for VLSI System Design

College of Enginering

University of Idaho

Moscow, Idaho 83843

Abstract- A new basic VLSI circuit element is presented that can be used

to realize pulse mode asynchronous sequential circuits. A synthesis procedure

is developed along with an unconventional state assignment procedure. Level

input asynchronous sequential circuits can be realized by converting a regular

flow table into a differential mode flow table t thereby allowing the new syn-

thesis technique to be general. The new circuits tolerate 1-1 crossovers. This

circuit also provides a means for state sequence detection and real time fault
detection.

1 Introduction

Many asynchronous sequential circuits can be modeled as a pulse mode circuit since the

inputs are presented in the form of pulses [1]. Level input sequential circuits can be

modeled as a pulse mode circuit by detecting input state changes [2]. This work presents

a basic circuit that can used to realize state variables that are effective in the realization

of pulse mode circuits.

Sequential circuits are normally defined in terms of flow tables, such as shown in Table

1. The inputs are shown across the top and the states along the side. The states are

encoded with internal state variables yi. Next state variables Yi identify the next state
that the circuit will assume.

This paper presents a VLSI circuit element that allows for efficient realizations of pulse

mode asynchronous sequential circuits. The network consists of pass transistor next state

forming logic with a unique buffer.

The paper describes the following:

• Synthesis procedures for pulse mode asynchronous sequential circuits.

• State assignment procedure for differential mode asynchronous sequential circuits.

• Tolerance of 1-1 input crossover situations. (This circuit is designed to tolerate 0-0

input crossover situations also.)

• State sequence detection.

• Real time fault detection.



12.2.2

2 Pulse Mode Circuits

The next state equations can be expressed as follows[3]:

(i)

where Yi is next state variable, Ip is the input state and lip is a sum-of-products expression

of state variables. It has been shown that the next state equations can be expressed as a

pass logic expression[3]:

= z,(f,l) + I2(f,2)... + z,,(f,_) (2)

WhereIp(f_pfmeans input Ip passes function f,,,. _ _;_=_==:_: : .... : ::_......
The basic circuit to implement pulse mode circuits is shown in Fig. !, Each state

variable is realized with this circuit. If there are rn state variables, then there would be m

such circuits except that there is only one NOR gate.

T

/.

Figure 1: Next State Circuit Module

In pulse mode operation: all _ could be 0. When allinput states Ip are 0, the pass

networks firare disabled and hence arc tristatedfrom the reverterinput of the firststage.

The feedback inverter in the firststage is provided to sustain the value at point A of the

firststage. However, the feedback inverter consistsof weak devices that cap bc ovcrdrivcn

by the/e(f_e) networks. The same kind of inverter is placed in the second stage of the

circuitafter transistorT.

For pulse mode operation, assume one and only one input state lp is 1 at a time or

all Iv are 0. In other words, only one input pulse is present at a time. When Iv = I,

pass network fly prescnts the proper next state value to Yi as speclficdin Eq. 2 for ]I/to

the input of the inverter at point A. Tim fccdback inverter is composed of weak pullup

and pulldown transistorssuch that they can be overdriven by the value passed by Ip(f_v).

Therefore the correct next state value as defined by Eq. 2 ispresent at point A in Fig. !



3rd NASA Symposium on VLSI Design 1991 12.2.3

and _ contains the complement of Yi. When all I v = 0, transistor T is enabled and _ is

passed to Yi and the circuit assumes the proper next state.

To summerize, when one I v = 1, _ assumes the complement of the proper next state

value of Y_ as defined by Eq. 2. When all Iv = 0, _ is passed to the second stage of the

inverter and Yi assumes the value defined by Eq. 2. The new present state feeds back to the

f_v networks to generate the new next state values to the first stage, dependent on which

Ip = 1. An interesting observation can be made which is common to all asynchronous

sequential circuits, but perhaps is more easily seen here. When all Ip = 0, the present

state, as determined by present state variables Yi, feed back to the fly logic. All possible

next states are generated and appear at the input of the pass transistors controlled by I v.

The circuit has "calculated", as determined by Eq. 2, all possible next states that the

circuit could enter and is prepared to assume any and every next state as defined by the

f_v terms. The exact next state is specified by the Iv state that becomes 1.

The state assignment problem for asynchronous sequential circuits is always a sig-

nificant problem. Pulse mode flow tables are in every way asynchronous in operation.

Therefore, the designer must be concerned about state assignment issues. Assume the

present state of the circuit is Si and state Sj is the next state when input I i becomes 1.

When all inputs are 0 prior to Ij --- 1, the state variables yl define the circuit to be in state

S_. When Ij = 1, since transistor T is disabled, the next state variables Yi do not change.

changes to assume values associated with Sj as defined by Eq. 2 when Ij = 1. However,

Yi remains unchanged as long as Ij = 1. Y_ does not change to the value of Sj until Ij
^

returns to 0, at which time Y_ cannot change. Therefore, each state transition occurs in

two stages:

= E ip(f,p)
7

=

when I v = 1

when all Iv = 0

A critical race can exist in an asynchronous sequential circuit only when the state

variables Yi being fed back can affect Yi without a change in input. Since the inputs must

change before present state variable yi can affect next state variable Yj, no critical race

can occur. The following theorem has been established.

Theorem 1 Asynchronous sequential circuits implemented with the basic circuit shown in

Fig. 1 are void of critical races.

If the circuit cannot experience a critical race, then the Single Transition Time (STT)

state assignment procedures need not be followed, specifically the Tracey condltlons[5] need

not be met. Moreover, since the STT conditions need not be met, any state assignment is

satisfactory as long as each state has a unique code.

The design procedure can be stated as follows:

Procedure 1 Step 1 Create an appropriate flow table.

Step 2 Provide a state assignment where each state has a unique code.



12.2.4

Yl Y2

0

0 1

1 1

1 0

XC Z

O0 01 11 10

0 A -

B -

C -

D -

A B o

c o
A D 1

C I

Tab!e !: Example Flow Table

Step 3 Form the state table.

Step 4 Find the next state equations in the following form:

Y, = E #(f,.)

where each input passes an flp expression of state _ariables.

_xamp!e ! Rea!ize a c_rfu_t which has two pulse input_ X and C an d a level output _ Z.

C represents a_ clock that produces pulses at a regular interval, Z mus t be 1 between pulses

Ci and Ci+l only if an X pulse occurred between clock pulses Ci-; and Gi.

The reduced flow table with the state assignment is shown in Table 1. The design

equations ;for this flow table are:

II1 -- X(yx)q t- C(_--_(y2) -_-yl(_-))

Y_ = X(_Z)+ C(_(y_) + Yi(_Z))

2.1 Design By Inspection

If Sj,, Sj2,

The synchronous state assignment procedure allows for a great deal of flexibility. The one-

hot-code is well known as a state assignment that allows one derive the design equations

by inspection. A one-hot-code encodes an n-row f!o E tame with n-state variaMes where

state Si is encoded wit!_y_ = 1 and all other Yi = O,j _¢i: A predecessor state pfstate S,
is a state the circuit is in prior to an input change that forces t_he ¢!reu!t into S_.

If S i is a predecessor state to Si under input Ip, .the partial next state equa}ion is

Y, = z,(yj). : .... _

• .,, Sik are predecessor states to Si, then the partial next state equa.tion is

= _r,(ujl + Uj_ +"" + Yj,). =

In general, the lip terms become simple sum-of-products where each product is an uncom-

plemented state variable.

Design Procedure 1 can be employed by simply changing Step 2 to implementinga o_e-

hot-code. The equations can be formed by the we_ known inspection method. Simplier

flp terms result. The disadvantage is that more state variables are generally needed. The

design equations for Tab!e 1 are



3rd NASA Symposium on VLSI Design 1991 12.2.5

Y1 = C(yl +y3)

Y2= x(yl)
Y3 = C(y2 + y4)

y4= x(y3)

Liu[6] proposed a design technique for iterative logic array synchronous sequential cir-

cuits that have the unique property where each state has predecessor states only in one

input. The next state equations have the form

v, = I,(f,p)

where each flp is a sum-of-products with each product term consisting of a single com-

plemented or uncomplemented state variable. This technique reduces the amount of logic

further for each next state variable in that only one input Ip pass gate is needed. The

potential disadvantage is that more state variables can be needed.

3 Tolerance to 1-1 Input Overlap

In the previous section there were no constraints on the width of each input pulse. (The

minimum width must be long enough to pass the signal to the output of the input inverters

at the first state). It was assumed that only one Ip would be 1. This condition can be

relaxed. For simplicity, suppose two inputs Ip and Iq are both 1. Moreover, suppose the

circuit should transition from 5'i to Sp or Sq under Ip or Iq respectively. When both Ip and

Iq are 1,

= r_,,(f,,,)+ ijf,q)

As long as Ip and Iq are 1, there can be conflicting signals at the input to the inverter

of the first stage of Fig. 1. Since, at least one input : 1, transistor T is not enabled and

y_ does not change and the conflict does not affect the present state. The circuit remains

in state S_ and will remain in S_ until both Ip and Iq = 0. If Ip(Iq) remains 1 longer than

Iq(Ip), then flp(flq) will be passed to specify _ and only when both inputs are 0 will the

circuit transition to Sp(Sq). Therefore, the circuit action is determined by the input that
remains 1 last.

Theorem 2 If more than one input state is 1, then the nezt state of the circuit is deter-

mined by the input that remains 1 last.

Proofi If more than one input = 1, then _ is determined by the equation

 j:t rj(:,j)

where Ij are those inputs that are 1. Since yi changes only when all Ij are O, the circuit

does not transition until all Ij = O. Suppose Ip is the last input that is 1. Then the

equation for _ becomes



I_..2.6

When art, transitions to 0, then Yi assumes the state determined by Y/which was specified

by i,, ::

QED,
From Theorem 2, it is clear that the order in Which=inputs transition from 1 _ 0 is

importanL Transitions from 0 _ 1 are unimportant. Therefore, if more than one input

state is I, it is unimportant which order the inputs transition 0 _ 1. The next state is

specified by the last input that trans_ti0ns i --, 0. Nor example, suppose there are four

input states for a circuit. If the inputs transition as shown in Fig. 2, the circuit will assume

the state specified by I3 when all the inputs are 0.

Figure 2: Input Waveform Example

4 Level input Circuits

The previous discussion focused on pulse mode circuits. Several researchers have intro.

duced the notion of transition sensitive asynchronous sequential circuit design [2,7]. Bre-

deson [2] converted a level input flow table to a transition sensitive (TS) flow table. A

TS flow table shows the table entries that result from a change in inputs, The essential

feature in a TS design is that inputs are represented as pulses which are created whenever

the input state transitions from 0 _ i. Consider the level input flow table of Table 2. The

TS representation of this flow table is shown in Table 3. Once the flow table is in the TS

form, the design procedure in Section 2 applies.

Bredeson introduced another notion in the design of TS circuits. If one begins with

a primitive row flow table, then the input state variables can become the state variables.

Additional state variables are needed only to produce unique codes for the states and this

is accomplished by partitioning stable states in each column of the flow table. In Table 3,



3rd NASA Symposium on VLSI Design 1991 12.2.7

Yl Y2 Y3

0 0 0 A

0 1 0 B

1 0 0 C

0 0 1 D

1 1 0 E

1 1 1 F

1 0 1 G

0 1 1 H

X1 X2

O0 O1 11 10

A B - C

A B F G

D H E C

D B E C

D B E G

A H F C

A H E G

D H F C

Table 2: Level Input Flow Table

0 0 0 A

0 1 0 B

1 0 0 C

0 0 1 D

1 1 0 E

1 1 1 F

1 0 1 G

0 1 1 H

X1 X2

00 01 11 10

C _ -

- F - -

- - -- D

C ° - -

" - B -

- - H

- F _

Table 3: Transition Sensitive Flow Table



12.2.8

y_ and Y2 are assigned to _1 and x_ respectively. State variable y3 is assigned to partition

ihe stable states in each column. Forexample Y3 partitions states A and D in the first

column. Therefore only one state variable is needed to implement the flow table rather

than the expected three.

5 State Sequence Detection

It might be desirable to be able to detect the potential transition between a pair of states

that might be associated with a critical event. Suppose state oek can be entered only from

state Si under fault free conditions. If state Sk is entered from state 5'n, i _ n, then an

error has occurred. In some cases, sug_ a transition should not be allowed.

The circuit p re_scnted here is cap_ble of-providing information necessary to detect the

occurrence of a transition between a pair of states prior to the actua| transition. If one

knows that an undesirable transition is about to occur, it is possible to prevent the tran-

sition and avoid an unwanted event.

State information is present at two points in the circuit of Fig. 1. The present state is

available at the output of the second stage Yi. When the next input state is 1, the next

state information is specified by Y/. To detect a sequence between a pair of states, then

the state information at Yi and _ can be decoded.

If it was desired to permit a transition to state Sk only from state Si, then S i can

be decoded from Yi and S_ can be decoded from _. If the next state as specified by

is Sk and the present state is not Si as specified by Yi, then an error condition can be

signaled. This is depicted in Fig. 3. To prevent the circuit from assuming state Sk under

the error condition, the error signal can be fed into the NOR gate which drives transistor

T in Fig. 1. The error signal would prevent the circuit transition to state Sk. Moreover,

since transistor T is not enabled when the error condition is detected, the circuit will not

transition to Sk and remain in S_. It might be desirable to stop a_ processing when the

error condition is detected. If so, the error signal can be used to disable all further input

state changes and the circuit would remain in the current state without any further state

transitions. _ will speClfy:the inc0rrcct:state:_j, Sj _ Si. If One desired to know the value

of Sj, _ could be examined to reveal the error state to help with diagnostics.

6 Fault Detection

Classical fault detection of sequential faults includes using an error detection code on the

state assignment [8]. If hardware is not shared, a single error detection code is Sufficient.

Since the design approach used here does not share logic_ except for the NOR gate which

drives the T transistors, a single error detection code can be employed and is used in the

work presented here. It is assumed that the NOR gate is hard core for this discussion.

Moreover, it is assumed that only one device can fail at a time and that the circuit will

assume all total circuit states before a second fault can occur. In this discussion, all faults



3rd NASA Symposium on VLSI Design 1991 12.2.9

that can cause a false next state value are detectable; this includes stuck-at, stuck-open
and stuck-on faults.

The circuit presented thus far has some interesting fault detection capabilities. Most

other fault detection mechanisms for sequential circuits detect the presence of a fault after

the circuit has assumed a faulty state. This circuit is able to detect the presence of a fault

in most of the circuit before the circuit actually enters the fault state.

In this discussion, it is assume that a simple parity code is used for fault detection.

Under the single fault assumptions above, only one extra state variable needs to be added.

Let the states of the flow table be encoded with an even parity state assignment. Whenever

odd parity is assumed by the state variables, a fault condition is detectable. Let all odd

parity states (fault states) be assigned to have a next state value that is also odd parity.

Therefore, whenever an odd parity state is assumed, the next state is also an odd parity
state.

The circuit for fault detection is shown in Fig. 4. The fault detector simply detects

the presence of odd parity on the state assignment; f is assigned to equal 1 when an odd

parity state is present. The fault detector monitors the parity of _. If a fault occurs to

any of the circuitry that produces _, f will detect its presence. With a fault, f -- 1, and

since f feeds into the NOR gate, the T transistor is not enabled and the fault state cannot

be assumed by Y/. In this case, the circuit does not enter the fault state. Moreover, if the
input states can be disabled, the circuit will remain in the current state.

Signal f will be driven towards a 1 value as the circuit transitions between unstable and

stable states. Signal f then would prevent the T transistor from being enabled, but this

actually helps the circuit not enter an improper state. Signal f can be used therefore to

produce a self synchronizing signal, but this is a subject beyond the scope of this paper.

If a fault occurs in the second stage after the T transistor, then an odd parity state will

be entered. The next state value as specified by the f_p terms will be odd parity also since

it is assumed that only one fault is present. If the f_p terms generate odd parity, then

will also have odd parity and then f -- 1 with the fault being detected.

A fault in a T transistor will have the same impact as a fault in the second stage. If

Y/ assumes the correct value in spite of a faulty T, no error is detected and the circuit

operates as designed. Only when Y_ assumes an incorrect value will an odd parity state be
entered and hence detected.

7 Summary

A fundamental logic circuit has been presented that will allow for efficient implementation

of pulse mode asynchronous sequential circuits. Level input flow tables can be transformed

into transition sensitive flow tables which can be directly implemented with the circuit

presented here. The resulting circuits are tolerant of 1-1 crossover conditions. The final

next state of the circuit is determined by the last input that is 1 whenever more than one

input state is 1.

The unique characteristic of state sequence detection can bc achieved with this circuit.



12,2.10

It is very easy to detect the present and next state in the circuitry and to prevent next

state transitions to occur. In addition to state sequence detection, realtime fault detection

can be achieved where a fault state can be detected prior to a transition to a fault state.

This fault detection capability covers a wide range of fault conditions and possible faults

in the circuit.

References: ........

[1] K. Cameron, S. Whitaker and J. Canaris, "ACE: Automatic Centroid Extractor for

Real Time Target Tracking", NASA Symposium on VLSI Design, pp. 8.2.1-8.2.8, Nov,

1991.

[2] J. Bredeson and P. Hulina, "Synthesis of Multiple-Input Change Asynchronous Cir-

cuits Uslng Transition-Sensitive Flip-Flops", IEEE Trans. Comput., vo!i C-32 , no. 5,

pp. 37-44, May 1973.
7

[3] S. K. Gopalakrishnan and G. K. Maki, "VLSI Asynchronous Sequential Circuit De-

sign", ICCD, Sept, 1990, pp 238-242.

[4] S. Whitaker and G. Maki, :'Pass-_ansistor Asynchronous Sequential Circuits", IEEE

JSSC, Vo!.241 No.l, Feb. 1989, pp.___71-78 ....... :

[5] J Tracey, "Internal State Assignment for Asynchronous Sequential Machines", IEEE

Transactions on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560.

[6] M. Liu, K. Liu, C. Maki and S. Whitaker, "Automated !LA Design for Synchronous

Sequential Circuits", NASA Symposium on VLSI Design, Vol 3, October 1991.

[7] J. Smith and C. Roth, "Analysis and Synthesis of Asynchronous Networks Using Edge

Sensitive Flip-Flops ¢', IEEE Trans on Computers, vol. C-20, pp. 847-855, Aug 1971.

[8] John Meyer, _'Fault Tolerant Sequential Machines", IEEE Transactions on Computers,

vol. C-20, October 1971. sequential circuits. IEEE TC around 1970: ::
z

r

y-

z



3rd NASA Symposium on VLSI Design 1991 12.2.11

ERROR
DETECT

Figure 3: State Sequence Detection Logic

kl

k2

k3

k-

kl

k2

k3

kn

Fault f

Detector

T

1___3

Figure 4: Fault Detection Logic



E

L



3rd NASA Symposium on VLSI Design 1991
N94-18378

12.3.1

Improved Self Arbitrated VLSI Asynchronous
Circuits

P. Winterrowd

NASA Space Engineering Research

Center for VLSI System Design

University of Idaho

Moscow, Idaho 83843

Abstract. This paper introduces an improved method for designing the class

of CMOS VLSI asynchronous sequential circuits introduced in the paper by

Sterling R. Whitaker and Gary K. Maki_ "Self Arbitrated VLSI Asynchronous
Circuits."

1 Introduction

Synchronous sequential circuits are often the first choice in VLSI design. Races are avoided

by synchronizing the circuit with a common clock signal; however, the frequency of this

signal must be slow enough to allow signals to propagate through the slowest block re-

gardless of how often that block's output is actually used. Also, the RC delays introduced

in VLSI design make synchronizing the circuit with a clock signal increasingly dii_icult

as the circuit's complexity increases. Moreover, with CMOS circuits peak power usage is

attained during switching. If several blocks are synchronized by a clock signal and, thus,

switching at the same time then the peak power required by the chip is greatly increased.

These limitations can be avoided by designing with asynchronous circuits. The paper

by S. Whitaker, "Self Arbitrated VLSI Asynchronous Circuits", presents an asynchronous

circuit with some interesting qualities. Of main interest here is the simple design by

inspection rules that arise from this circuit. This paper presents a variation on Whitaker's

circuit which reduces the number of transistors required.

2 Circuit Model

The general model for this circuit is the same as that given in Whitaker's research. There

is an enable and disable block feeding into a buffer stage as shown in Figure 1.

Figure 1: General Circuit Model



12.3.2

Where !/i and Yi are present and next state variables respectively, and Ij represents

input signals.

The variation on the original circuit presented here differs in how the buffer, enable,

and disable blocks are implemented. Whitaker's buffer circuit consisted of two inverters

and two weak feedback transistors as shown in Figure 2:

Input r

Y
i

y.: 1 _- :

Figure 2: Original Buffer Circuit

As shown, this buffer circuit provides not only Y/ but also Yii. The buffer state table

for this circuit is given in table one.

Table 1: Original Buffer State Table

Y i Input

0 0

0 1

1 0

1 1

0 Z

1 Z

Yi

0

1

0

1

0

1

The buffer for the circuit presented in this paper is shown in Figure 3. Although it

only produces the Yi variable and not it's complement, it saves two transistors and in the

design procedure for this circuit the complemented variable is not needed. The buffer state

table for this circuit is given in Table 2.

Z
=

=



3rd NASA Symposium on VLSI Design 1991 12.3.3

Input lilt
IY Y.

1

Figure 3: New Buffer Circuit

The enable and disable blocks are simple pass networks and their design is completely

specified by the design equations given later in this paper.

Table 2: New Buffer State Table

Y i Input

0 0

0 1

1 0

1 1

0 Z

1 Z

Yi

1

0

1

0

0

1

3 State Assignment

The state assignment for a flow table remains the same in this paper as in its predecessor,

a simple one-hot-code state assignment as shown in Table 3.



12.3.4

Table 3: Example Flow Table

I1 12

F E

13

C 0
C 0

® o

YYYYYY
abcdef

100000

010000

001000

00100

ooo1o
00001

These circuits effect a non-normal transition. Thus, in order to show that the circuit

operates correctly, it is necessary to show that no transition path between two states

overlaps any transition path between two other states.

Definition 1: £et [yJ be the state with bit Yi set and let [y_ yb yc..'] be the binary

number with the appropriate number of bits with the y_, yb, yc... bits set.

Definition 2: By definition (to be shown later) let a proper transition path between

[yi] and [yj] be [yi YS]" Note that from the one hot code state assignment every state can

be ezpressed by [yk], where yk represents the one bit which should be set for any state.

Theorem 1: Given a one-hot-code state assignment with the above "proper" transition

path, no two transition paths will overlap.

Proof: Since the transition path for two states [yi] and [yj] is given by [yi Yi] this will

overlap with the transition [ya] and [y_] given by [ya yb] only if y_ = y_ and Yb = Yj; thus,

the transition between two states only overlaps itself.

Therefore, to show that the circuit presented here correctly implements a flow table it

must simply be shown that it correctly implements the "proper" transition path referred

to above.

4 Design Procedure

This section starts with a definition.

Definition 3: Let a scale-of-two of loop in a flow table be defined by a any state A

under input Ik which goes to state B under input Ij where state B returns to state A under

input Ik.

The basic design equations for a circuit can be expressed as:

_(5_y_(0)) + _y,(1) (1)

Enable Expr. + Disable Expr.

L



3rd NASA Symposium on VLSI Design 1991 12.3.5

Note that the disable expression form only holds in the absence of order-of-two loops.

Looking at an example flow table as given in Table 3 and reproduced here for conve-

nience:

Table 3: Example Flow Table

A

B

C

D

E

F

I 1 12 13

® o

YYYYYY
abcdef

100000

010000

001000

000100

000010

000001

For each state the design procedure is simple:

For state [yi]:

1. Identify all input states I i under which [y_] is stable. These input states become the

Ij's in the basic equation.

, For each Ij identify all unstable states [y_] in the same column and note the stable

state's row [yk] under which they occur. Again, these [yk]'s become the yk's in the

basic equation under the appropriate Ij's.

3. Thus, the enable equation can be written as:

x(zjxw(o)) (2)

4. Identify all unstable states [Yl] under the row for the stable state [y_].

5. The disable expressions for the state [y_] can be written as:

xv,(1) (3)

6. For each term in the disable expression determine if it is a member of a scale-of-two

loop. If so, include the input state under which this term occurs as part of the term,

For example, if y_(1) was under Ik and was a member of a scale-of-two loop, then

v,(1) wouldbecomeXkV,(1).

As an example, the enable expression for state A, [ya], would be:

I,(w(o) + w(o)) (4)



12.3.6

Yb
_I_

_L_

Ii

_L_

Output

Figure 4: Example Enable Block

And, the disable expression for state A would be:

y,(1)+yf(1)

?

Ye
_1_

?3

yf
_1_

Output

(5)

Figure 5: Example D_sable Block

5 Circuit Operation

In order to show that this circuit operates correctly, it must be shown that the circuit

transitions properly. To do this it must be shown that in going from state [y_] to [yj] under

input Ij the transition path is [Yl Yj].

Theorem 2: Only positive and not complemented variables are used in the design

equations for this circuit.

Proof: This follows directly from the design procedure and the basic design equation.

Theorem 3: The enable and disable equations for [yi] do not contain the present state

term Yl.



3rd NASA Symposium on VLSI Design 1991 12.3.7

=

i

Proofi The design equations for state [y_] derive their terms from the unstable states

in row [y_] and the stable states in the other rows which contain unstable [yi] states. Since

every state [y_] in the row for the state [yi] is stable and every state [y_] not in the row for

state [y_] is unstable, then the y_ term never appears in the design equations for state [yi].

Theorem 4: For a reduced row flow table, for each unstable state [y_] under input [_

on the stable state [y,]'s row that unstable state will contribute only the following terms to

the design equations for that table:

y,,(1) or L,y,,(1) disable term for Yo

I,,y,(O) enable term for Y_

Proof." The proof follows directly from the design procedure.

Theorem 5: For a reduced row flow table that transitions from state [Yl] to the _tate

[yk] under input Ij then while the circuit i_ in state [yJ under input Ij the only variable to

be affected is Yk which i_ _et high.

Proof: If this theorem were not true then either 1) Yi would be set to 0 from this

state, or 2) Irk would not be changed, or 3) Some other variable (all of which are zero at

this point due to one-hot-code state assignment) would be raised to a 1.

First, for Y/ to be set to zero with all other state variables at zero then the design

equation would have to contain the term y_(1), which is invalid from Theorem 3, or 9if(l),

which is invalid from Theorem 2.

Second, Yk will be set high from Theorem 4 and the design procedure which state that

the enable expression for Yk will include Ijyk(O). Note that a conflict could occur if the

design equation for Yk contained yi(1); however, this would be a scale-of-two loop and the

y_(1) term would be Iky_(1) where h is different from Ij. Thus, there would be no conflict

for a flow table properly designed and Yl, will be set high.

Finally, for another variable [ym] to be set high from the state [y_] under Ij then it's

enable equation would have to contain the term Ijy_(O) which would, from the design

procedure, mean that under the row for state [yl] under Ij would be state [ym]; however,

by definition this location contains [Yk].

Thus, the theorem must be true since all other alternatives are false.

Theorem 6: /f the circuit iJ in the _tate [Yi Yk] under input Ij where state [yi] goe_ to

state [yk] under input Ij then the only variable to be affected is Y_ which is set low.

Proof: If this theorem were not true then either 1) Yi would stay high, or 2) Yk would

be set low, or 3) Some other variable would be set high (since all the other variables are,

by definition, low to begin with.)

First, from Theorem 4 and the design procedure the design equations for Yi contains

the term yk(1) or I_yk(1); thus, it would remain only not go low if it also included Ijyi(O),

which is invalidated by Theorem 3, or Ij_(O), which is invalidated by Theorem 2, or

Ijyk(O) which can be invalidated by the following argument. If the enable expression for



12.3.8

Y_ contained any Ij terms then the position under/j would have to contain [yi] and, by

definition, it contains [yk]. Thus, Yi is set low.

Second, for Yk to be set low it would contain the term yk(1) or Ijy_,(1), which can

be invalidated from theorem three, or _(1)i wi_]c-h- can be invalidated by theorem two, or

y_(1) which can be invalidated by the following argument. If Yk did contain y_(1) then that

would be a scale-of-two loop and the y_(1) term would have to be/,_yi(1) where Im is not

equal to/j; thus, Yk will not be set low.

Finally, for another variable [y_] to be set high from the state [y_ yj] under Ij, the

enable equation would have to contain either the term Ijy_(O) or Ijyj(O). The term Ijy_(O)

would, from the design procedure, mean that under the row for state [Yd under Ij would

be state [ym] which by defin-i-fi-on contains [yk]. The term Ijyj(O) would, from the design

procedure, mean that under the row for sta:te [yj] under_ w_ould be state [y,,] which by

definition contains the stable state [y_]. Thus, no other variable will be set high.

__ Therefore, since all the - o theralternatives are proven false, t_hi_s theorem must be true.

So from Theorems 5 and 6 the circuit created from the design procedure in the previous

section fulfills Theorem 1 and is critical-race free.

6 Transistor Count Comparison

From the assignment procedure it is obvious that we need one state variable from each

state. Also, from Figure 1, which shows the general circuit model for this circuit, it is

clear that for each state variable we need four transistors ( one buffer.) Moreover, from_

Theorem 4 and the design procedure it can be shown that for each stable State [Yd in:a

flow table one transistor is required if an unstable state [Yd is also in that column and for

every unstable state two transistors are required. Als0, every scale-of-two loop contributes

an additional two transistors. Thus, the number of transistors needed for a reduced row

flow table is given by:

Total # of Transistors = 48 + B + 2U + 2L (6)

Where s = number of states, b = number of stable states in the low table with identical

unstable states in the same column, u = number of unstable states in flow table, and L

= number of scale-of-two loops that exist in the flow table. The number of transistors for

the design method in Whitaker's paper can be shown to be:

Total # of Transistors = 6S + 4U + 2L (7)

Thus, for the example flow table given in Table 3 where s=6, b=6, u=12, and L=0 the

total number of transistors for the improved design method is 54, and the total number

for the old method is 84; thus, a difference of 30 transistors.

Table 4 shows some typical values for reduced row flow tables and compares transistor

counts.

=

r



3rd NASA Symposium on VLSI Design 1991 12.3.9

Table 4: Transistor Count Comparison

Transistor Count

S B U L Old Method

6 6 12 0 84

8 9 15 1 110

7 10 18 2 118

9 10 17 0 122

New Method

54

73

78

80

New/Old

0.643

0.664

0.661

0.656

Reset Feature

In any circuit, asynchronous or synchronous, it is advantageous to be able to preset the

circuit to some state. This is almost a necessity upon startup since a circuit often begins

in an unknown or undesirable state. The basic model for this circuit can be modified to

easily include a reset feature as shown in figure six:

Reset

.__ Ij--_ ENABLE _--- Yk (''')

ij- mSAt3 E
5(.--)

Figure 6: Modified General Circuit Model

This feature only costs one transistor for each state; however, the design must insure

that all inputs are low while the reset is high.

Summary

The general circuit model for this paper and the one-hot-code state assignment lead to

an easily designed and implemented asynchronous circuit. Once an input is introduced

the circuit sets the new variable high which then sets the variable signifying the old state

low. This [y_];[y_ Yi];[YJ] non-normal mode transition insures that no two transition paths

overlap; thus, the circuit is crltical-race free.

This improved design method reduces the transistor count from the old method by,

roughly, one third, decreasing the size of the overall circuit and increasing its usefulness.

Finally, although the circuit operates at 1/2 the speed of an STT state assignment

asynchronous circuit due to its non-normal mode operation it is very easy to design and

avoids the disadvantages of a synchronous circuit such as clock routing, power bussing,

and speed dependency upon slowest information path.



12.3.10

References

[1] S. Whitaker, S. Manjunath and G. Maki, Self Arbitrated VLSI Asynchronous Circuits,

NASA SERC 1990 Symposium on VLS[-D-es-_gn, pp. 87-103.

[2] S. Golpalakrishnan, G. Kim and G. Maki, Implications of Tracey's Theorem to Asyn-

chronous Sequential Circuit Design, NASA Symposium on VLSI Design, pp. 9.1.1-

9.1.11, Nov. 1990.

[3] S. Whitaker and G. Maki, Pass Transistor Asynchronous Sequential Circuits, IEEE

Journal o/Solid State Circuits, pp. 71-78, Feb 1989.

This research was supported (or partially supported) by NASA under Space Engineer-

ing Research Center Grant NAGW-i406.



N94-18379
3rd NASA Symposium on VLSI Design 1991 13.1.1

A .Special Purpose Silicon Compiler
For Designing Supercomputmg VLSI Systems

* N.Venkateswaran,P.Murugavel,V.Kamakoti,M.J.ShankarRaman,S.Rangarajan,

M.MaUikarjun,B .Karthlkeyan,T.S.Prabhakar,V.Safish,P.R.Venkat asubramaniam,

R. Sivak um ar, R. Srlnivasan, S. Ch an dr asekh ar, G. Suresh,M. B. K art hikeyan,

S.Ramachandran,S.Sankar,P.V.Balaji,P.Kishore

** F.Lawrence,S.Pattabiraman,G.Suresh,V.Arun Shankar,A.Ashraf, V.Balaji,

M.Balaji,Sunil.K,R.Devanathan,Y.Eliyas,K.Krishnan,B.Krishna Kumar,

B.Kumaran,N.Rajesh _ G.Vijay Venkatesh

**Department of Computer Science and Engineering.

Sri Venkateswara College of Engineering

University of Madras

Nazarethpet, Madras 602 103, India.

Abstract- Design of general/special purpose Supercomputing VLSI systems for

numeric algorithm execution involves tackling two important aspects namely

their computational and communication complexities. Development of soft-

ware tools for designing such systems itself becomes complex. Hence a novel

design methodology has to be developed. For designing such complex systems
a special purpose silicon compiler is needed in which

1. The computational and communicational structures of different numeric

algorithms should be taken into account to simplify the silicon compiler
design.

2. The approach is macrocell based.

3. The software tools at different levels,algorithm down to the VLSI circuit

layout, should get integrated.

In this paper a special purpose silicon (SPS) compiler based on PACUBE

macrocell VLSI ARRAYS [1] for designing supercomputing VLSI systems is

presented. It is shown that turn-around-tlme and silicon real estate get reduced

over the silicon compilers based on PLAs,SLAs and gate arrays.

Characteristics I and 2 above enable the SPS compiler to perform systolic

mapping (at the macrocell level) of algorithms whose computational structures

are of GIPOP (Generalized Inner Product Outer Product) form [2]. Direct

systolic mapping on PLAs, SLAs and gate arrays is very difficult as they are

micro-cell based. A novel GIPOP processor is under development using this
special purpose silicon compiler.

* pursuing their higher studies/employed in India or abroad. Contact for communication regarding this
paper N.Venkateswaran, Additional Professor, Dept of Computer Science and Engineering, Sri Venkateswara
College of Engineering,University of Madras,India. Authors' names listed randomly.



13.1.2

1 Introduction

No silicon compiler has yet been developed exclusively for tackling the complexity in de-

signing supercomputing VLSI systems. In developing such a compiler besides achieving re-

duced turn-around-time and area, computational performance of mapped functional units

and architectural characteristics like systolic mapping should also be considered. The latter

two factors are not taken care of in micro-ceU based silicon compilers.

In conventional compilers the software tools are not integrated from algorithm down to

the VLSI circuit level. The integration of software tools at different levels can be achieved

by adopting novel methodologies in designing supercomputing VLSI systems (processors

and arrays) and developing novel algorithm mapping techniques. This integration reduces

the software complexity to a great extent.

The turn-around-time is high if gate arrays, PLAsa_cl SLAs are employed for super-

computing system synthesis. Further the silicon compiler!on should take place at a much

higher level than at the gate or the micro-ceU level for supercompufing system design. =

The PACUBE macro-ceU structure is a combination of PLAs, SLAs,gate arrays and

standard cells.Besides storage and logic elements an important computing unit,the DRAA

(Dynamically Reconfigurable Array Adder [1] ) is also present (Fig 1). The presence of the
DRAA reduces the turn-around-time and silicon area drastically for designing special pur-

pose VLSI systems. The DRAA helps in achieving high performance due to its functional

and architectural characteristics. If the DRAA were to be mapped on to PLAs, SLAs

and gate arrays the performance will get degraded.The special purpose silicon compiler

built for mapping supercomputing systems on the PACUBE arrays achieves all the above

factors.

2 PACUBE Macrocell

Tools.

Array And Systolic Mapping

2.1 Unified GIPOP Operations On Macrocell Arrays

Exccution of number of numeric algorithms involve inner-product operations. Several

VLSI systems have been proposed for executing numeric algorithms whose computational

structures are of inner-product form. For this purpose VLSI arrays of inner-product step

processors have been employed conventionally.

In general the computational structure of numeric algorithms are complex. However

on a closer study it is noted that these structures can be brought under a generalized form

called Generalized Inner-Product Outer-Product (GIPOP) functions. These are

(Ai * Bi)
I 2_.,

i=1 Ci

(A,+B,)0 11
/=1 Ci

(1)

(2)



3rd NASA Symposium on VLSI Design 1991 13.1.3

l

t

PROGnAWhUL|t E
t_Ht($

,_r__ c

F--

i"

L

I I

b I

Figure

D

1: PAl 3 (ASLA) Logic Model

I

The computational structures of numeric algorithms may involve a mathematical com-

bination of the above two equations. Evaluation of GIPOP functions based computations

involve inner-product operations, chain multiplications, outer-product operations and re-
ciprocal operations.

It is shown in this paper that by using PACUBE VLSI arrays [1] these GIPOP func-

tions can be evaluated as a sum of equivalent weighted inner-product functions only. Also

massive parallelism can be employed in GIPOP operations. This unification of the execu-

tion processes of GIPOP functions only in terms of equivalent inner-product operations is

achieved by establishing an identical inter and intra macrocell connections (data flow map-

ping ) on PACUBE arrays for chain multiplication and inner-product operations. Both

the outer-product and reciprocal operations can be expressed in terms of sum of chain

multiplication operations [3].

Let the inner-product,chain multiplication, outer-product and reciprocal operations be
defined as follows.

T,

• = *{.(S,)p, Jg,),,, T,} (3)
i=1

7",

II{_,(S,)_, + _gi)p} = O{_,(S_)p, ,_K_)_, Tt} (4)
_=1



13.1.4

Tt

II{_(s,),}
i----1

= ¢(_(s,)., T,}

= C(_(s,)., .(S_).,...._S_,)_}

= R(_(S,).}

Pi -

Using the relationships (7) and (8) we get

$1,5"2, ... ,5'i and K1, K2_ .. ,Ki are the operands of word length p bits.

w - The weight of the MSB of the word length.

Tt - Number of inner-product terms (operand pairs) or

Number of chain multiplication terms (operands).

....... _(s,)p --_ :G.(s,)_. , _._,(s,)_.:;; :.: _i(s,)_,}:
_,(g,)p --_ {_,.,(g,)p.,_,._,(S,)p,,_,,..._,,(g,)p,}

Word length of the partition i, i = 1 to n

Welght of the MSB of the partition (Pl + P2 +"" P_)

(7)
(8)

Tt

P = Pl +P2 + "'" +P. = _P_
i=1

Tt

= _, + _, + ""+ _. = F._, (9)
i=1

('*' Defines binary multiplication)

_ S, )p * _( g, )p = _+_(Q,)p+p (10)

2.2 Inner-pr0duct operations on PACUBE Arrays =

Execution of inner product operations on PACUBE arrays has been dealt in [1]. To achieve

massive parallelism in evaluating inner-product functions partial product arrays (PPAs)

of the different product terms " --

are obtained in parallel (forming a massive array) and added simultaneously [1]. Refer

to Fig. 2a. There are three different ways of massive array formation and reduction [2].

They are called MAR1, MAR2 and MAR3 processes. The figure 2a corresponds to

I(3(A,)4, 3(B,),, 4)

functlon.The reduction processes corresponding to MAR2 and MAR3 are similar to

MAR1 reduction process presented in [1].

The MAR Process should be chosen such that the following important criteria are taken

care of



3rd NASA Symposium on VLSI Design 1991 13.1.5

1. The operands [4,4] sub matrices of the massive array injection into the PACUBE

array should be simpler.

2. The partial sum bits output corresponding to the sum output of the massive array

should occur in consecutive cycles of the array reduction process.

3. The partial sum output should be of same length in all cycles .

4. The partial sum output should occur only in the peripheral macrocells.

5. The intra macrocell data flow should be regular i.e. there is no multiplexing of data
between macrocells.

6. Number of array reduction cycles and number of macrocells should be minimum.

2.3 Chain Multiplication On PACUBE Arrays

The application of PACUBE array can be extended for chain multiplication operation.
Consider the massive array formation for

C(3(A,)4,3}

Similar to inner product operation three different types of massive array can be formed

for executing chain multiplication. Refer to Fig. 2b. Only MAR2 massive array formation
is shown.

2.4 Unification Of Chain Multiplication And Inner Product Op-

erations On PACUBE Arrays

There is a striking similarity between array formation corresponding to the inner product

and chain multiplication operations. The only difference is in the array sizes. The massive

array of C{3(A,)4, 3} is larger than that of I{3(A,)4, 3(B,)4, 4}. In this example the differ-

ence in array sizes is not much. In general the massive arrays corresponding to the inner

product and chain multiplication operations can be made of comparable sizes by a proper

choice of the word length and number of terms. Hence identical array reduction process

having same inter and intra macrocell data flow can be established on the PACUBE macro-

cell arrays. The operand injection points differ for these operations. Hence structurally

these two operations are equivalent. Such equivalent pairs may not exist for certain values

of word length and number of terms. In some cases even if the equivalent pairs exist the

word length of the pairs may he of odd values. The word length of the equivalent pairs

should have values in powers of 2. It is preferable to have equal word length for such

equivalent pairs. The values of number of terms (problem size) can be adjusted to achieve
this.

For example in the equivalent pair I{s(Si)s, s(Ki)s, 8} and C{s(S_)s, 3} the word

lengths are same but the number of terms are different. The equivalent pair



13,1._

a+b+c _

t4bs¢:

t+_s¢ I lsblc I

_+b,c

64_IG I i|_i¢ |

14b_¢1 ,l_jbtG | 41b_c!

tlb,cl llb_c z *tb+¢!

a+b:c t %btc, _blc t a!b:c:

l_bte t I'lb_c I atb|c t

llb}¢ l t!b)Ct

ilablc I llbtC I llb+c +

lilblC I I||l¢ I

ltbl¢ I

tsb_c,

oo

C (3 (Si)4'3 ) | (3($i)4, 3tK+) 4,4)

NUMERICgLGOR!THI'IMAPPINGCONCEPT
(,-)

I + :,<+-+ _m

t rt l p_, _ m_ + =

+

' I I+ i +

: * I I A +.'+..+__.,

, @+ IP _1 3 IPIg_ +_4

1
u,._----- L

Figure 2: MAR process-2 arrey formation

I{16(Si)!B, 16(Ki)i6, 4}, C(16(Sl)16_ 8(,.._3)8, 8(,-.,,q3)8, _} has different word length and prob-

lem size. But C{!_(S_)_B , 1(_(S_)_, _B(S_)_, 3} can be easily decomposed (by proper word

iength and term/problem size partitioning)in terms of C{_e(St)t_, s(,-q_)s, s(S_)B, 3}. That

is O{_(S_)I_, _,} can be decomposed to I{_(S_)_, _(K_)_, 4}. Further details on this is

dealt in section 3.3.

This leads to a unified PACUBE VLSI array for executing Inner product and Chain

multiptic_.tion operations. Outer product operation and high speed multlplicative division

algorithm [3] are based on chain multiplication operation. Hence the execution processes
of GIPOP functions can be unified on the PACUBE macrocelt arrays.

2:5 + S_ystolic Mapping Of GIPOP Functions ......

An algorithm has been developed for automatic systolic mapping of GIPOP function ex-

ecution on the P-arrays and implemented under DOS: (Fig 3). The unification of the

execUtis0n processes of the_GIpoP functions has+ grea+tly simplified the+ development of

systolic mapping tools.



3rd NASA Symposium on VLSI Design I991

,,,r_ ]

Figure 3: Systolic mapping of GIPOP functions on Pacube arrays

13.1.7

3 GIPOP Processor Array And

Algorithm Mapping

Software Tools For

3.1 GIPOP Processor

Existing processor arrays meant for supercomputing are classified into special purpose

and programmable general purpose arrays. An attempt to combine the advantages of

these approaches has culminated in a novel processor design approach, namely GIPOP

processor arrays. This novel approach is expected to give very high performance/cost
ratio for supercomputing systems [2].

The internal architecture of the GIPOP processor and its instruction set is shown in

Figure 4. The simulation of the instruction set has been completed. The GIPOP processor

can execute the equivalent pair I{3(Si)4, 3(Ki)4, 4} and C{3(Si)4, 3}.

The equivalent pairs are chosen based on the PACUBE macrocell, GIPOP processor
and the array complexities.

3.2 GIPOP Processor Array

Two levels of pipelining take place in algorithm execution on the GIPOP processor array

partly shown in Figure 4 ,one at the macro-cell level within the GIPOP chip and the other

at the processor level. The Processor level pipelining is controlled by the Array Control



13.!,8

INPUT
_!TA

ONTROL
#PUT

TO tRRAV
CONTROLLER

HIGH SP£ED t
_1 PROCESSOt

ME"ORV

I,L.R.,. RJ

2 ,

I I

" _CV E

J PIOCEOOOR _ r - 1

ItCCUllULITOR ,,J; :]

sc_t_l_ I , I
"ULTII'tiERt ',1

:: .... I .......... I

GIPOP INSTRUCTION SET

GIPOP PROCESSOR

ARRnY NITH

SNITCHES

Q
o:d?0

@° o

.............................. _i_ii_iii_':'i_t_l_l{':'_i_l_'5_,'_ ............flOU

l NST_CT ! OH OPEl_ CONN'D_S

MOU GPR, M

MOU 6PR , [

Pipelin_ng of data fro_ _eMor_
or input port through
general purpo;e regzster_.

MOV ¢M , M ; Loads _bree four-bit operands
for chaVn Mul_iplicat_on operatior

MOU CM , I ; either fro_ Me_orv or input port.

Loads eight four-bit inner-product
operands froMMeMorv
or input port,

toad# eight four-bit
_aasive _rra9 operand_
in to the prlMarN aoo_ulator.

Accumulate the output of GIPOF
i in the _ri_ar_ acc_ulator.

! Loads four-Lit _ultiplier £ro_
, ee_or9 to _calar Multiplier,

i Loads the _ultillicand fre_ the
i accu_,itor to sca|ar _ultiplier.

; Transfer the ouput
i o£ _neral purpose re_isters,
; uirur , pri_ar9 acc_uia¢or ,
i and the scalar _ultiplier
; to the outpu_ port.(These
; Ioading_ can be done in
; parallel),

MOV IP ,

MOt' |P ,

ffO'J PAC

MOU PA(

MOu PA(

MOU tiLT

flOU MLT

MOU 0 ,

MOU 0 ,

NOV 0 ,

MOLI 0 ,

fl

I

I

GPOP

M

PAC

GPB

GPOP

PAC

MLT

!l I I I II

[7 3(S7)4, 3(El),, C 3($1),, 3($2),, 3($3),, 3)]

Figure 4: GIPOP processor archuitecture for equivalent pair

L-

r



3rd NASA Symposium on VLSI Design 1991 13.1.9

Unit (ACU) and the macroceU level pipelining is controlled by the chip control unit (CCU).

The hardware complexity of the switch lattice depends on the processor complexity, data

communication complexity in an algorithm and the word length. The design of the ACU
is under progress.

3.3 Mapping Of Numeric Algorithms On GIPOP Processor Ar-

ray

Mapping of numeric algorithms on the GIPOP processor array involves tackling the com-

putational (levels 1 _z 2) and communicational (level 3) complexities.

Level 1. Decomposing the computational structure of the algorithm in terms of

GIPOP equations which are further decomposed in terms of the inner

product functions only [1].

Level 2. The architectural capabilities of a GIPOP processor is bounded by prob-

lem size and wordlength. Suitable algorithms for problem size and word

length partitioning of GIPOP functions and the corresponding software

tools have been developed. The algorithm is based on definitions (3) -

(6) []. Refer to Figure 5.

Level 3.
a. Proper loading of input operand frames into the high speed processor

memory (Block level memory loading) from the system memory.
b. Programming the processor and array control units.

Numeric algorithm mapping on the GIPOP arrays basically involve mapping of different

inner product blocks (IP Blocks) of variable complexities (see Fig 2c). Functionally each

of these IP Blocks may correspond to different GIPOP operations.The data flow between

the corresponding group of GIPOP processors (making an IP block) can be syntactically

described including both the functional and behavioral aspects of the GIPOP processor

[2] .Mapping of an algorithm on the arrays is to get this syntactical description of the data
lqOW.

Software tools for levels 1 and 3 are being developed. The novel concept of mapping

numeric algorithms on the GIPOP processor array shown in Figure 2c greatly simplifies
the development of software tools for levels 1 and 3 above.

4 PACUBE Logic Level

4.1 Inter And Intra Cell Routing.

An efficient algorithm for inter and intra macrocell routing has been developed taking into

account the shortest path considerations. The software tools are shown in Figure 6 as
flowcharts.



13.1.10

In utLo_'_,...!

/ _,-i_ /

YUi@_ "o

p&r_l tl on

Muttlp _1 th@

Lot +._._ _._s

I

>
CeS

_or I nl

_-' _'_=_"/
t

/ i,-,p,.,1: /

partition

Ho

[ _::4@:. }

,,_es

# wordlen

Chain Multiplication Inner Product

Figure 5: Wordlength & term partitioning

4.2 Subprograna (Funct{0na|-units) Library Generation And Link-

ing.

Several subprograms, sequential and combinatorial,have been mapped on the PACUBE

macrocell. An efficient PACUBE Hardware Description Language (PHDL) has been de-

veloped.: _?he subprogram linking is done using this PHDL and the related Software tool

has been developed. ( Fig. 7 )

5 PACUBE Circuit Level Discussions

5.1 Interactive Layout Generation And Checking.

A software tool for the generation of device level layouts in an interactive fashion has

been developed (Fig. 8). It provides four layers viz Diffusion, Polysilicon and two levels

of metal. The package supports both n-well and p-well CMOS processes. Lambda based

design rules have been adopted. Special facilities such as mirroring, translation, rotation,



3rd NASA Symposium on VLSI Design 1991 13.1.11

Figure 6: Inter-cell logic level tool

step & repeat , cut & paste and sealing are available to aid in faster design. The layout of

an entire macrocell has been developed using this tool. Layout geometries are expressed

using PACUBE device level codes. The design rule checker developed is edge based and

performs both inter and intra layer checking.

The different functional units of the maeroeell are treated as standard cells and de-

pending on the application the required standard cells can be placed within the maerocell.

This option gives rise to macrocell arrays with different sizes of macrocells.

5.2 Intracell And Intercell Mapping.

A software translator for the PACUBE logic level code to PACUBE device level code

conversion and a device level to Caltech Intermediate Format (CiF) translator has also
been developed.



13.1,12

Figure 7: Intra-cell logic level tool

5.3 Simulation .......

Circuit simulation of different functional units of the macrocell for 1.2 micron technology

using PSPICE is nearing comp!etion. Logic level simulation of PACUBE_: macroceU for

GIPOP operations has been carried out using the PACUBE logic simulator.

In this paper novel methodologies have been proposed for designing silicon compilers for

synthesising supercomputing VLSI systems The important criteria for such a silicon

compiler are integration of its software tools and the architectural considerations,



3rd NASA Symposium on VLSI Design 1991

p

13.1.13

Figure 8: Sub-program linker

7 Future Work

An algorithm for extracting the computational complexities of numeric algorithms in terms

of GIPOP functions is to be taken up. A methodology is to be developed for mapping the

communication graph of numeric algorithms on to the GIPOP processor array as shown in

Figure 2c. Reconfigurable fault-tolerant PACUBE arrays [2] has been developed and the

corresponding software tools to incorporate this into the silicon compiler has to be taken
up.



13.i.14

MAIN PROGRAM :

(jL ,A T)

i 4

I p_o_ co_,_ __,_
I

[

I

. _ ............ |

0PERA T I 0NS :

( )STOP I • UI_A '
, ]

2. D_H

(Includes Mirroring,

Translation and Cut&i_aste)

3. SAOE

4 . SOI_

5. HELP

6 . DELETE

7. STPJt_

8 . ROTATE

9 . EI_SE

tg. DIR

ll • S_LIH4
...... ...-J

I. ..........................

Figure 9: Pacube macro cell based device level layout editor



3rd NASA Symposium on VLSI Design 1991 13.1.15

References

[1] N.Venkateswaran, PACUBE Arrays For Supercomputers, Proc. of the First Inter-

national Conference on Supercomputing Sy_tem_, conducted by the IEEE Computer

Society and Pentagon, held at Florida, U.S.A., Dec.6-10,1985.

[2] N.Venkateswaran, et al., Supercomputing Systems on PACUBE VLSI Arrays, Re-

search Report. Department of Computer Science and Engineering, Sri Venkateswara

College of Engineering, University of Madras, India.

[3] Joseph J.F.Cavanagh, Digital Computer Arithmetic Design and Implementation, Mc-
Graw Hill publishing house.



m



3rd NASA Symposium on VLSI Design 1991

N 9 4- 1 8 3 0
13.2.1

A Fast Adaptive Convex Hull Algorithm on

Two-Dimensional Processor Arrays

with a Rec0nfigurable BUS System 1

S. Olariu

J. Schwing, and J. Zhang

Department of Computer Science

Old Dominion University

Norfolk, VA 23529-0162

U.S.A.

Abstract- A bus system that can change dynamically to suit computational needs

is referred to as reconflgurable. We present a fast adaptive convex hull algo-

rithm on a 2-dimensional processor array with a reconflgurable bus system

(2-d PARBS, for short). Specifically, we show that computing the convex hull

of a planer set of n points taken O(logn/logm) time on a 2-d PARBS of size

mn × n with 3 _< m __ n. Our result implies that the convex hull of n points in

the plane can e computed in O(1) time in a 2-d PARBS of size n 1"5 × n.

1 Introduction

Recent advances in VLSI have made it possible to build massively parallel machines featur-

ing many thousands of cooperating processors. This increase in computational power does

not, however, translate into increased performance of the same order of magnitude. One

of the reasons seems to be that interprocessor communications and simultaneous memory

accesses often act as bottlenecks in parallel machines.

To alleviate the inefficiency of long distance communication among processors, bus

systems have been recently added to a number of parallel machines [2-4,5,6,11]. If such a

bus system can be dynamically changed, under program control, to suit communication

needs among processors, it is referred to as reconfigurable. Examples include the buJ

automaton [11], the reconfigurable mesh, and the polymorphic torus [2,3], among others.

The computational model used throughout this work is the reconfigurable mesh [5].

An m × n reconfigurable mesh (also called a PARBS [13]) consists of m × n identical

processors positioned on a rectangular array (refer to Figure 1). The processor at (i,j),

(1 < i < m;1 < j < n) is identified by P(i,j). Every processor has 4 ports denoted by N,

S, E, and W. There are also implicit north, south, east, and west directions (refer to Figure

1). In each processor, ports can be dynamically connected in pairs to suit computational

needs. In the absence of these local connections, the PARBS is functionally equivalent to

the mesh connected computer.

1This work was supported by NASA under grant NCC1-99 by the National Science Foundation under

grant CCR-8909996 is gratefully acknowledged



13.2.2

1 2 3 4 5

2

E

3

S
4

Figure 1: A 4x5 PARBS

: ::f :T:

We assume that each processor has a small number of registers of size O(log n) bits and

that a processor can perform in unit time standard arithmetic and boolean operations. We

assume a single instruction stream: in each time unit the same instruction is broadcast

to all processors, which execute it and wait for the next instruction. Each instruction

can consist of setting local connections (as explained later), performing an arithmetic or

boolean operation, broadcasting a value on a bus, or receiving a value from a specified

bus. The regular structure of the PARBS makes it suitable for VLSI implementation. In

fact, it has been argued [5] that the PARBS can be used as a universal chip capable of

simulating any equivalent-area architecture without loss of time.

By adjusting the local connections within each processor several subbuse s can bees-

tabtished. We assume that the setting of local connection is destructive in the sense that

setting a new pattern of connections destroys the previous one. At any given time, only

one processor can broadcast a value onto a bus. Processors, if instructed to do so, read

the bus. If no value is being transmitted on the bus, the read operation has no result.

It is assumed [5,6] that communications along buses take O(1) time. This seems to be a

reasonable assumption in the light of recent experiments with the YUPPIE system [4].

A number of problems have been solved in O(1) time on PARBS. Very recently, Wang

et al [13] have proposed O(1) algorithms for the transitive closure and some related graph

problems; Olariu, Schwing, and Zhang [9] have proposed an adaptive sorting algorithm;

specifically, they show that sorting a sequence of n reals takes O(, 1°-_-) time on a 2-d
_ lOg I'?1 f

PARBS of size nm × n with 3 < m < n. In particular, their result implies a constant-time

sorting algorithm on an n l"s × n 2-d PARBS.

The convex hull of a set of points in the plane is defined as the smallest area convex

set that contains the original set. The problem of computing the convex hull of points

in the plane is central in a variety of problems in pattern recognition, computer graphics,

statistics, and image processing [1,7,8,10].



3rd NASA Symposium on VLSI Design 1991 13.2.3

To the best of our knowledge, no convex hull algorithm has been reported in the lit-

erature on a 2-d PARBS. The purpose of this paper is to propose a fast adaptive convex

hull algorithm for a set of n points in the plane. We reduce the problem of computing

the convex hull of a set of planar points to the problems of sorting and computing the

prefix maximum of n real numbers. To begin, we show that the problem of computing the

maximum of n real numbers can be solved in time 0( l°-g_-_tlog,,_J on a 2-d PARBS of size m × n

with 2 _< m <_ n. We also use the fast adaptive sorting algorithm of [9]. What results is a

fast adaptive algorithm that computes the convex hull of a set of n points in the plane in

0¢1o__ time on a 2-d PARBS of size nm × n with 3 < m < n. In particular, for m=n °'S
klogm/ -- --

we obtain an O(I) time convex hull algorithm on a 2-d PARBS of sizenz's× n.

2 The stepping stones

Our convex hull algorithm relies on a number of intermediate results that we present next.

To begin, we consider the problem of computing the prefix maximum of n reals on a n × n

PARBS. Specifically, given n real numbers al, a2,..., an with processor P(1,j) storing

aj, the problem is to compute maxl<_<j{al} for all 1 _< j < n. Our algorithm involves

establishing a number of subbuses and broadcasting values along them. The details of our

algorithm are spelled out by the following sequence of steps.

Algorithm Prefix-Maximum;

Step 1. every processor P(i,j) (2 < i < n-1;1 < j <_ n) connects its ports N and S;

Step 2. every processor P(1,j) (1 < j < n) broadcasts aj southbound along the vertical

subbus in column j;

Step

Step

3. every processor

4. every processor

subbus in row j;

P(i,j) (2 < i < n - 1;2 < j < i) connects its ports W and E;

P(j,j) (2 _< j < n) broadcasts aj westbound along the horizontal

Step 5. every processor P(j,i) (2 < j _< n- 1;! _< i < j) compares a_ and aj;

if a_ > aj then

P(j, i) disconnects the horizontal subbus;

marks itself;

Step 6. every marked processor P(i,j) broadcasts a "0" along the horizontal subbus

eastbound;

Step 7. every processor P(j,j) (1 _< j _< n) stores in its own memory a "0" or a "1"

depending on whether or not it has received a "0" in Step 6;

Step 8. every processor P(i, j) (2 < i < j < n) connects its ports N and S;



13.2.4

Step 9. every processor P(j,j) (2 < j < n) broadcasts on the vertical subbus northbound

the value it has stored in Step 7;

Step 10. every processor P(1,j) (2 < j < n) that has received a "0" in Step 9 connects

its ports W and E;

Step 11. every processor P(1,j) (1 <__j _< n) that stores a "1" broadcasts aj eastbound

along the horizontal subbus in row I; =

Theorem 1. Algorithm Prefix-Maximum correctly computes the prefix maximum of n

real numbers in O(1) time on an n × n PARBS.

Proof. To begin,_notethat in:_tep _; every processor P(i,j)(2< i < n: 1;i < j < i)

knows ai and aj. Further, it is easy to see that at the end of Step 7 processor P(j,j)

(1 < j < n) stores a "1" if, and only if, aj is as least as large as al with i < j.

Consequently, every processor P(i,j) in row 1 that at the end of Step 9 stores a "0"

knows that aj cannOt be the prefix m_i-mum of al for i < j. In fact _the prefix maximum

Of the first j real numbers al, a2,...,aj is stored by the first processor to the left of P(1,j)
that stores a "1"_ The c0nclus_ion_ foUpws. []

Next, we show how to Compute the maximum of n real numbers al, as,...,an on an

m × n PARBS with 2 _< m <: n. Again, we assume that the numbers are stored one per

processor such that for all j (1 < j _< n), P(1,j) stores aj. The idea of our algorithm is to

partition the original m x n PARBS into subPARBS of size rn × m. To avoid tedious but

inconsequential housekeeping details we assume that n is a power of m.

We partition the n columns into contiguous groups of m columns each and let the k-th

subPARBS, M_, (0 < k < n/m - 1) consist of the columns km + 1, km + 2,...,krn -4- m.

As a preprocessing step, for all j (2 < j < n) we move the data contained in P(1,j) to the

"diagonal" processor of its m × m subPARBS, P((j - 1) rood m + 1,j). The main loop of

this algorithm applies the (prefix) maximum algorithm described above to specified m × m

subPARBS. This process proceeds iterativeiy, determining the maxima of groups of size

rn, m 2, m 3, and so on. Clearly, in log., n - t°--_- iteration we have computed the maximum
-- log m

of the n numbers.

We omit the details oi'bus:c0nstruction steps which are similar to those in the pre;Ao:us

algorithm. The reader can easily fill in the details.

Algorithm Maximum;

Step 1. {preprocessing}

for all j (1 < j < n) in parallel

establish a vertical subbus from P(1,j) to P((j - 1) rood m + 1,j);

P(1,j) broadcasts aj on this subbus to P((j - 1) rood m + 1,j);

P((j - 1)rood m + 1,j) marks itself

endfor;



3rd NASA Symposium on VLSI Design 1991 13.2.5

Step 2. {main loop}
fork_l to _ do

log m

for all j (1 < j _ _-_) in parallel

all processors connect ports W and E;

all processors P(i, (j - 1)m _ + 1) split the horizontal suhbus in row i;

all marked processors broadcast the value they hold

along the horizontal subbus westbound;

all marked processors unmark themselves;

M(j_l),_k-1 computes the maximum of the values

in column (j - 1)m k + 1;

let the result be stored in P((j - 1) mod m + 1,(j - 1)m k + 1);

all processors P((j - 1) rood m + 1, (j - 1)m k + 1) mark themselves
endfor

endfor;

Theorem 2. Algorithm Maximum correctly computes the maximum of n real numbers
in O(l°-g--e-_ time on an m x n PARBS with 2 < m < n.

V\logm/ -- __

Proof. The correctness is implied by the following result: at the end of the t-th iteration

(0 < t < lo__e__ for all j (1 < j < _r), processor P((j- 1) modm + 1 (j 1)rn' + 1)-- -- log rn 1_ -- -- , --

contains the maximum in columns (j - 1)m _ + 1 through jm t.

The proof of the above statement is by induction on t. The basis is easy: at the end of

the 0-th iteration the conclusion is guaranteed by the preprocessing step.

Assume the above statement satisfied at the end of the t-th iteration. We only need

show that it also holds at the end of the (t+l)-st iteration. For this purpose, it is instructive

to follows the (t + 1)-st iteration: here, after all processors connect their ports W and E

thus establishing horizontal subbuses in each row, the processors V(i, (j - 1)m t+l + 1) split

the horizontal subbus in row i; next, all marked processors broadcast the value they hold

along the horizontal subbus westbound. By the induction hypothesis, these are processors

P((j - 1) mod m + 1,(j - 1)m' + 1). Therefore, when the subPARBS M(j-1)m,+_ compute

the maximum of the values in column (j - 1)rn k+l + 1, the induction hypothesis guarantees

that the resulting value is the maximum in columns (j - 1)m t+l + 1 through jrn t+t, a total

of m t+l columns.

To argue for the running time, note that by Theorem 1, the inner for loop runs in 0(1)
time. The conclusion follows. []

3 The Algorithm

We are now in a position to present our planar convex hull algorithm. Let S=(pl, P2,...,pn}

be a planar set of points; for 1 <: i < n, Pl is represented by its Cartesian coordinates (x_, yl).

To avoid tedious details we assume, without loss of generality, that the points in 5' are in

general position, with no three collinear and no two having the same z or y coordinate.

The output of the convex hull algorithm is a linked list CH that contains all the points



13.2.6

on the convex hull starting with the one with the largest z coordinate and proceeding

counterclockwise. Our algorithm consists of the following sequence of steps.

Algorithm Convex-Hull;

Step 1. find the four extremal pointsin S, and letthem be, without loss of generality,/h,

P2, P3, and p4. Specifically, za=maxl<j<,_(xj}, y2=maxx<j<_{yj},__ z3=mini<-<n___ {_:'3},

and y4--mina<j<,{yj}. : :=

Step 2. compute the sets

5"3 = {p, lz3 < z_ < z4;y4 _< Yi _< y3},

& = (PlI_4 <_ 23i _--- _l;Y4 <___Yi <_ Yl),

Note: For simplicity, we deal with $1 only, the others being perfectly similar.

Step 3. sort the points in $1 by increasing y coordinate, and let L1=(pl=ql, q2,...,qt=P2)

be the resulting sorted sequence;

Step 4. for allj (l_<j<t) inparallel

find the subscript dj (j < dj < t) such that the angle determined by qdj,

qj, and the negative direction of the z axis is as large as possible;:

Step 5. compute-the prefix maximum 0f the values dj in L1, and set re(j) +-- maxl<t<j_l{dt);

Step 6. CH1 +-- LI;

for all j (2 < j < t - 1) in parallel

remove qj from ell, whene er _<re(j);

Before giving the proof of correctness of our algorithm, we need to take note of the

following simple observation: The Sorted sequence Li of points obtained at the end of Step

3 can be viewed as determining a polygonai l_ne (termedaci_ain in _10]) jom_ing pf_nd-p2:

It is easy to see that the convex hull CH of the set S of points is exactly the convex hull

of the simple polygon P obtained by concatenating the polygonal lines L1, L2, L3, and L4,
in this order.

The following result argues for the correctness of our algorithm.

Theorem 3. At the end of Step 6, CH1 contains the portion of the convex hull contained

in $1.

Proof. By the previous observation we only need show that the linked list CH1 obtained

at the end of step 6 contains the restriction of the convex hull of P between pl and P2.

This follows from the following claim

a point qj (2 < j < t - 1) of L1 belongs to CH if, and only if, dj > re(j).



3rd NASA Symposium on VLSI Design 1991 13.2.7

First, let qj(2 _< j < t - 1) in L1 belongs to the convex hull and let q_ and q_ (i < j < k)

be its immediate neighbors on the convex hull. (We note that since ql and qt trivially

belong to the convex hull, the points qi and qk are well defined.) Clearly, di=j and so

re(j) = j < dj = k, as claimed.

Conversely, if some point qi in L1 does not belong to the convex hull then let qi and qk

(i < k) be the closest points on the convex hull, with qj lying on the chain from q_ to qk.

Since q_ and q_ are neighbors on the convex hull, we have di=k; furthermore, dj < k = re(j),
and the conclusion follows. []

Next, we propose to show how Steps 1-6 above can be efficiently implemented on a

2-d PARBS. More precisely, we assume a 2-d PARBS of size nm × n with 3 < m <

n. Some of the Steps 1-6 in our algorithms need the whole PARBS while others can

run on a subPARBS, as specified; the data movement necessary to conform to the input

requirements of a specific step are ignored here; the reader can easily work out all the

details.

Step 1 can be implemented to run in O(1) time on an n × n subPARBS since we only

minl<.<n z. and z y.need compute maxl_<i<,,{zj} and j_ { _} with z = z =

Step 2 is demonstrated for $1 only; computing Si with i = 2, 3,4 is similar. All that

is needed is to establish a subbus running through the whole of row 1. The processors

storing Pl and p2 broadcast, in two computational steps, their Cartesian coordinates to all

processors in row 1; every processor that stores a point in Sx marks itself. Thus Step 2

runs in O(1) time.

Step 3 can be implemented as follows. First, all unmarked processors change the y

coordinate of the point that they store to +c_. Now the sorting algorithm in [9] is invoked:

this runs in Iq( l°-zg--e-_and uses the whole PARBS. Note that at the end of Step 3, processors
_logm/

P(1, 1), P(1,2),...,P(1,t) contain L in sorted order.

Step 4 can be implemented to run in O(1) time on an mn × n subPARBS as follows.

Recall from Step 3 that, initially, for all 1 < j _< t P(1,j) stores qj. For further reference,
this subPARBS is further subdivided into subPARBS of size m × n as follows. The first

rn × n subPARBS involves the first m rows, the second the next m rows and so on.

We establish vertical subbuses in each column and let P(1,j) broadcast the Cartesian

coordinates of qj along the subbus in column j (1 < j < t). Next, establish horizontal

subbuses running from P(m(j-1)+l,j) to P(m(j-1)+l,t) (1 < j < t). Note that these

are precisely the first rows of our m × n subPARBS. For all j, P(m(j- 1)+ 1,j) broadcasts

the Cartesian coordinates of qj eastbound on the horizontal subbus in row m(j - 1) + 1.

Every processor P(m(j - 1) + 1,k) with j < k < t computes the angle specified in Step 4.

Actually, computing the angle itself is not necessary, the tangent of the angle can be readily

computing using two subtractions and a division. Now the maximum of all values in the

first rows of these subPARBS can be computed in 1o ,_O('o°_) time using Algorithm Maximum

developed in Section 2. It is easy to arrange for the maximum in row m(j - 1) d- 1 to be

sent back to P(1,j). This, clearly takes O(1) time since only the appropriate subbuses

have to be established and the information broadcast along them.

Step 5 can be implemented to run on an n × n subPARBS by using Algorithm Prefix-
Maximum discussed in Section 2.



13.2.8

Step 6 involves marking every P(1,j) that contains a point of the convex huff. After

this is done, a horizontal subbus is established in row 1. Every marked processor splits

this bus and broadcasts its identity westbound on its own subbus. This, in fact creates

the list CHx as desired. Clearly, the running time of this step is O(1).

To summarize our discussion we state the following result.

Theorem 4. The convex hull of a planar set of n points can be computed on an PARBS

of sizenmxnwith3<m<nin 1o ,_0(_) time. []

In particular, if m = n °'s then we have the following result.

Corollary 4.1. The convex hull of a planar set of n points can be computed in O(1) time
on an PARBS of size n 1"_ × n. []

4 Conclusion

A bus system that can be dynamically altered to suit communicational needs among co_

operating processors is referred to as reconfigurable. In this paper we a fast adaptive

algorithm to solve the planar convex hull problem.

Specifically, we showcd that computing the convex hull of a set of n points in the plane
takes 0¢ l°-z__lo:,,,,J on a 2:d PARBS of size nm × n with 3 < rn < n. In particular, our result

implies that the same problem can be solved in O(1) time on a 2-d PARBS of size n 1"s × n.

References

Ill J. A. Holey and O. H. Ibarra, Iterative algorithms for planar convex hull on mesh

connected arrays, Proc. 1990 International Conference on Parallel Processing, III-
102-III-109.

[2] H. Li and M. Maresca, Polymorphic-torus network, IEEE Transactions on Computers,

vol. C-38, no. 9, (1989) 1345-1351.

[3] H. Li and M. Marcsca, Polymorphic-torus architecture for computer vision, IEEE

Tran._. Pattern Analysis and Machine Intelligence, vol. 11, no. 3, (1989) 233-243.
: : : .... 7 7 : =:- : : : :

[4] M. Maresca and H. Li, Connection autonomy and SIMD computers: a VLSI imple-

mentation, Journal of Paralle! and Di?tributed Computing, vol. 7 (1989)3ff2:320.

[5] R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout, Meshes with reconfig-

urable buses, Proceedings of the International Conference on Parallel Processing, vol.

1, (1988) 205-208.

m

z=

m



3rd NASA Symposium on VLSI Design 1991 13.2.9

[6]

[7]

{s]

[9]

[10]

[11]

[12]

[13]

R. Miller, V. K. Prasanna-Kumar, D. Reisis, and Q. F. Stout, Data movement oper-

ations and applications on Reconfigurable VLSI arrays, Proceedings of the fifth MIT

Conference on Advanced Research in VLSI, (1988) 163-178.

R. Miller and Q. Stout, Mesh Computer Algorithms for Computational Geometry,

IEEE Trans. on Computers, 38 (1989), 321-340.

R. Miller and Q. Stout, Efficient Parallel Convex Hull Algorithms, IEEE Trans. on

Computers, 37 (1988), 1605-1618.

S. Olariu, J. L. Schwing, and J. Zhang, A Fast Adaptive Sorting Algorithm on a Two

Dimensional Processor Array with a Reconfigurable Bus System, submitted.

F. P. Preparata and M. I: Shamos, Computational Geometry, An Introduction,

Springer-Verlag, New York, Berlin, 1988.

J. Rothstein, Bus automata, brains, and mental models, IEEE Trans. on System_

Man Cybernetics, 18, (1988).

Q. F. Stout, Meshes with Multiple Buses, Proc. 27th IEEE Syrup. on the Foundations

of Comp. Science, (1986) 264-273.

B. F. Wang, C. J. Lu, and G. H. Chen, Constant Time Algorithms for the Transitive

Closure Problem and its Applications, Proceedings of the International Conference on

Parallel Processing, vol. 3, (1990) 52-59.



=

_ k
k

m

E



3rd NASA Symposium on VLSr Design 1991

N94-18381
13.3.1

VHDL Simulation with Access to Transistor Models

J. Gibson

NASA SERC for VLSI Systems Design

University of Idaho

Moscow, Idaho 83843

1 Introduction

Hardware description languages such as VHDL have evolved to aid in the design of systems

with large numbers of elements and a wide range of electronic and logical abstractions. For

high performance circuits, behavioral models may not be able to efficiently include enough

detail to give designers confidence in a simulation's accuracy. One option is to provide

a link between the VHDL environment and a transistor level simulation environment.

The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator

provides the combination of VHDL modeling and transistor modeling.

2 Vantage VHDL Simulator

The Vantage Analysis Systems VHDL simulation environment is a full implementation of

the IEEE 1076 VHDL Standard. The Vantage system is entirely written in "C". Hierar-

chical designs from Mentor Graphics' NetEd, EDIF or other schematics can be imported

into Vantage. The Vantage system compiles VHDL designs and simulates their behavior

either interactively or in a batch mode. Incremental symbol or schematic changes can

be made in the Vantage environment, from which structural VHDL can be automatically

be generated. The created or edited schematics can be exported back into the original

schematic environment. Connectivity and structural checks are made by the schematic
viewer.

Results may be viewed as waveforms or as entries in a table, and can be viewed as the

simulator is running or after the simulation run has completed. Circuit node values can

also be displayed on the associated node in the circuit schematic.

The Vantage simulation control gives the user source code level breakpoints and trigger-

ing capability based on a very wide range of conditions specified by the user. Convenient

viewing and the manipulation of the values of signals, variables and constants is provided.

Breakpoints can be based on boolean expressions, change in a signal, source code lines, or

by design units (by instance or globally).

In the Vantage system, the VHDL source code is parsed by a C code generator. Then

the host "C" code compiler prepares ihe executable file or files. The Vantage Intermediate

Format is used for the generation of the "C" code. All design units lower in hierarchy

must have older time stamps than the designs that reference them. The Vantage system

automatically recomiles all "out-of-date" design units referenced during a recompile.

Several conveniences are provided by the Vantage system, including automatic mapping



13.3.2

of signal namesthat do not conform to the VHDL signal name convention to an internal,
VHDL compatible form. This permits familiar namesof existing systemsto be used when
interfacing with the Vantage simulator. The Vantage Control Language facilitates the
generation of test vectors.

Extensive libraries of vendor supplied VHDL models, parts and packages,from SSI to
VLSI, are available. Any VHDL in a Vantage library can be exported to an ascii file.
Vantage alsosupplies a concurrent compiler that spreadsthe compilation task of a design
acrossa network, to improve compilation speed.

3 The NOVA Simulator

NOVA is a logic simulator that was recently developed at the University of Idaho NASA

Space Engineering Research Center for VLSI Systems Design. NOVA is a second generation

design, targeted for designs of up to a few million primitives (transistors and logic gates).

NOVA has been used to simulate integrated circuits designed for the NASA Space Station

and Explorer missions and other NASA projects, and for Hewlett Packard disk and tape

drives. NOVA presently is ported to HP 9000 Series 300, 400 and 700's, the HP/ApoUo

DN10000, the Cray X-MP and NeXT systems. Behavioral models can be used in NOVA

to assist in the architectural definition of major functional blocks before circuit details

are completely known, and to improve simulation performance at most levels of system

modeling.

Structural description is accomplished using the BOLT or HP Block Description (BDL)

languages. NOVA utilizes hierarchical design methodology, allowing designs to be conve-

niently partitioned. Efficient management of design complexity is made possible by the

block oriented circuit description. SCIP schematics, based on Hewlett Packard design

tools, provide schematic documentation, from which the BOLT design description can be

extracted.

NOVA supports synchronous and asynchronous modeling of hierarchical designs using

i0gic primitives and intrinsic devices. Most types of transistors and logic gates are rep-

resented in the existing library, including bidirectional CMOS devices and bidirectional

transmission gates. If the designer requires new primitives to accurately model a special

circuit, NOVA provides a means of incorporating the user defined model.

NOVA provides for full timing analysis of combinational and sequential circuits, spec-

ified by rise and fall delays, using a timing wheel based simulation engine.

Behavioral modeling, using a "C" based functional model capability, allows the de-

signer to generate high level descriptions of a block of circuitry. Productivity is improved

by allowing the designer to simulate the function of a block before the detailed circuit

implementation is available. Very good behavioral modeling performance is achieved by

compiling the functional models with the simulation engine. Transistor or logic gate cir-

cuit models can be mixed with_ or replace, behavioral models, with full timing and delay

modeling capability.

A configurable Xll graphics user interface assists the designer in viewing and interpret-



3rd NASA Symposium on VLSI Design 1991 13.3.3

f

f

ing simulation results. Signals and busses can be viewed as waveforms. Trigger conditions

can be defined to find specific signal relationships in the simulation output, allowing in

depth analysis of complex events.

NOVA also provides numerous analysis features, such as node coverage, simulation de-

bugging, output formatting, node forcing, simulation state logging and saving, and others.

Software tools in NOVA greatly simplify test vector development for design verification.

A test vector programming language makes it possible for the designer to develop compact

descriptions of complex simulation sequences.

The overall capability of the NOVA simulator closely matches that of many commercial

simulators. A major issue is the fact that NOVA's behavioral modeling capability is not

close to any industry standards, like VHDL, which makes it difficult for NOVA users to

leverage existing model libraries or to import existing designs. On the other hand, the

transistor level modeling in NOVA is highly evolved and well known by the NOVA user

community. Using VItDL as a modeling language will likely open many opportunities

for an organization like the NASA SERC for VLSI Systems Design, compared to using a
proprietary modeling language.

4 Multiple Value Logic Systems

Simulations performed at the logic level of abstraction describe a digital circuit in terms of

primitive logic functions such as NAND, NOR, etc., and allow for the nets interconnecting

the logic functions to carry states of zero, one, unknown, and high impedance. In the

case of NOVA, strengths of active, resistive and floating accompany the logic states, to

provide a total of twenty-two logic values. These twenty-two logic values are built into the

structure of the simulator and are possible to change or expand, but not necessarily easily.

The VHDL standard provides a Multi-Value Logic structure that allows the individual

user of VHDL to tailor the resolution of logic values to satisfy the needs of a general design

methodology or the specific preferences of individuals. This flexibility in describing logic

values in a digital system can have a considerable influence on the transportability of a

VHDL model from one design group to another. Having too few logic values can cause

erroneous results in hardware systems that have bidirectional data busses, open-collector

or high-impedance conditions. More logic values are necessary to model open-collector

devices with pull-up resistors and situations that can occur when initializing a digital
system.

For the coupling of NOVA and the Vantage VHDL simulator, the model compatibility

issue is resolved by using the same types of logic states and strengths for both simulation

systems. The MultirValue logic system of the Vantage system is set to represent the same

values as NOVA, with the resolution functions providing the same !ogle value when circuit

outputs are connected together.



13.3.4

5 Transistor Level Performance Issues

One of the primary motivations for this work is the acceleration of the performance of

transistor, or switch level, simulations in the VHDL environment. During the original

design of the VHDL language, transistor level simulation was not included as a primary

requirement. However, algorithms have been developed in VHDL that can simulate the

properties of bidirectional transmission gates, without extensions to the VHDL language.

Given that VHDL can model bidirectional pass transistor networks, a second issue is _

the amount of memory required to represent a primitive in a VHDL simulator compared

to a more "hardwired" simulator that has semantics built into it's runtime kernel, such _..

as NOVA or Verilog. NOVA uses about 35 bytes per primitive (transistor) in the internal

representation. The amount of memory required for the average primitive in VHDL is not

as easily determined. Based on overall file size, it appears that as much as 1000 bytes of

data are associated with each primitive in the Vantage simulation system, a VHDL system

that is known for relatively good performance. It is common for VHDL system models to

require virtual memory, which automatically invokes at least a 10X performance penalty,

relative to a simulation model that runs entirely in RAM. A 500,000 NOVA transistor

model, entirely composed of transistor primitives without any use of behavioral models,

will fit in a workstation's 32 megabyte random access memory.

Another difference between the Vantage VHDL modeling system and NOVA is the

use of resolution functions. A resolution function, applied to a node in a circuit, is used

to return the value of a signal when the signal is driven by multiple drivers, during a

simulation. All VHDL signals with multiple drivers must have a resolution function tied to

that signal. With VHDL, the designer has the capability of defining any type of resolution

function desired, either wired-OR, wired-AND or average signal value. NOVA has the

equivalent of a resolution function, but it is coded in optimized "C", tightly linked with

the rest of the core of the simulator and is fixed in definition. A VHDL resolution function

is written in VHDL as a package, a representation that will be translated into "C" code

but not optimized for fast execution.

6 "C" Behavioral Model Interface to the Vantage Sim-
Z

ulator

A complete simulation system should be able to efficiently and quickly incorporate algo-

rithms not represented in the native language of the simulator. To make possible fast

development of designs, algorithms that already exist in program form _should be usable

in system simulations without requiring a rcimplementation. If a design under develop- Z

ment uses, for example, output from a digital filtering algorithm that is going to be part of

another integrated circuit, it may be of considerable advantage to use a high level program- __

ruing language version of that algorithm. Developing a new implementation of a digital

filtering algorithm is not only a duplication of effort; new sources of error and changes in

performance may also result.



3rd NASA Symposium on VLSI Deslgn 199i 13.3.5

Both NOVA and the Vantage Simulator allow "C" based behavioral models to be

compiled into each simulation environment. In NOVA, a BOLT description is written

for the behavioral model, describing the input and output connections to the rest of the

simulation model. The NOVA "C" behavioral model is compiled in "C" and the resulting

object data is compiled with NOVA into a form containing the regular primitive based

simulation environment and the functional model. In the Vantage VHDL environment, the

process is similar, in that the user must provide an entity (the structural or input/output

description) written and compiled in VHDL prior to compiling the combined VHDL/C

architecture. The architecture (the behavior of the module) is written and compiled in

"C". Both systems provide the necessary parameters required for passing state, strength

and timing information between the behavioral model and the main simulation model.

Again, using an industry standard language, such as VHDL, as the modeling interface,

should provide more flexibility and opportunity in the future.

7 "C" Based Simulator Interface to the Vantage Sim-
ulator

Using the Vantage Simulator and NOVA is one way of meeting the dual goals of using

an industry standard behavioral modeling language and achieving decent transistor level

simulation performance. It is presently estimated that the transistor level simulation per-

formance of NOVA will exceed that of the Vantage Simulator by 20 to 50 times. The

software to accomplish the link between NOVA and the Vantage Simulator is expected to

be available from Vantage in the near future.

8 Future Directions

Research is in progress to identify simplier behavioral modeling methodologies that are

quicker and easier to use. The objective is to reduce design time by having only one

complete representation of a design, first as a top level behavioral model which is then

broken in to subsystems of the design as the function of each block is identified. At any

time, either the behavioral or transistor level representation of a block can be used. For

performance reasons, the behavioral models can be used. For detailed circuit timing and

performance analysis, the transistor level representations of the blocks being designed can

be used while the rest are left at the behavioral level. VHDL is satisfactory as the modeling

language for this effort, since description standards will be a large part of the solution to

an easier to use simulation environment. In a complementary effort, software tools are

being developed by the University of Idaho Computer Science Department to compare the

functionality of behavioral models and transistor level models.



7


